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3.1 Basic Equations

We here assume the followings: (i) The disk is steady and axisymmetric.
(ii) It is also geometrically thin and plane parallel. (iii) As a closure relation,
we use the Eddington approximation. (iv) The gray approximation, where the
opacity does not depend on frequency, is adopted. (v) The viscous heating rate
is concentrated at the equator or uniform in the vertical direction.

The radiative transfer equations are given in several literatures (Chandrasekhar
1960; Mihalas 1970; Rybicki, Lightman 1979; Mihalas, Mihalas 1984; Shu 1991;
Kato et al. 1998). For the plane-parallel geometry in the vertical direction (z),
the frequency-integrated transfer equation, the zeroth moment equation, and
the first moment equation become, respectively,
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where θ is the polar angle, I the frequency-integrated specific intensity, E the
radiation energy density, F the vertical component of the radiative flux, P the
zz-component of the radiation stress tensor, ρ the gas density, and c the speed
of light. The mass emissivity j and opacity κabs and κsca are assumed to be
independent of the frequency (gray approximation).

For matter, the vertical momentum balance and energy equation are, respec-
tively,
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0 = q+
vis − ρ (j − cκabsE) , (3.5)

where ψ is the gravitational potential, p the gas pressure, and q+
vis the viscous-

heating rate. In this paper, we do not solve the hydrostatic equilibrium (4).
Generally speaking, when the contribution of the radiative flux is small, com-
pared with the pressure gradient term, the gas pressure dominates in the at-
moshere, and the density distribution will not be constant. When the radiative
flux is strong, on the other hand, the radiation pressure dominates, and the
density may be approximately constant throughout much of the disk. Anyway,
we suppose that the density distribution would be ajusted so as to hold the hy-
drostatic equilibrium (4) through the main part of the disk atmosphere, under
the radiative flux obtained later.

Using this energy equation (3.5) and introducing the optical depth, defined
by

dτ ≡ −ρ (κabs + κsca) dz, (3.6)

we rewrite the radiative transfer equations:
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where µ ≡ cos θ. Final equation is the usual Eddington approximation.
As for the boundary condition at the disk surface of τ = 0, we impose a usual

condition:
3cPs = cEs = 2Fs at τ = 0, (3.11)

where the subscript s denotes the values at the disk surface.
For the internal heating, we consider two extreme cases: (i) No heating

(q+
vis = 0), where the viscous heating is concentrated at the disk equator and

there is no heating source in the atmosphere. (ii) Uniform heating in the sense
that q+

vis/(κabs + κsca)ρ =constant. The latter case means that the kinematic
viscosity ν is constant in the vertical direction, since q+

vis/ρ = ν(rdΩ/dr)2, as
long as the opacities are constant.

Finally, the disk total optical depth becomes

τ0 = −
∫ 0

H

ρ(κabs + κsca)dz, (3.12)

where H is the disk half-thickness.

3.2 Analytical Solutions

Except for the emergent intensity I, several analytical expressions for mo-
ments as well as temperature distributions were obtained by several researchers
(e.g., Laor, Netzer 1989; Hubeny et al. 2005; Artemova et al. 1996). For the
completeness, we recalculate them as well as the intensity I.

3.2.1 No Heating Case

We first consider the case without heating in the disk atmosphere: q+
vis = 0,

but with uniform incident intensity I0 from the disk equator, where the viscous
heating is assumed to be concentrated.

In this case, the analytical solutions of moment equations are easily given as

F = Fs = πI0, (3.13)
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This is a familar solution under the Milne-Eddington approximation for a plane-
parallel geometry. It should be noted that the vertical radiative flux F is
conserved, and equals to πI0 at the disk equator.

Since we obtain the radiation energy density E in the explicit form, we
can now integrate the radiative transfer equation (3.7). After several partial
integrations, we obtain both an outward intensity I(τ, µ) (µ > 0) and an inward
intensity I(τ,−µ) as
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where I(τ0, µ) is the boundary value at the midplane of the disk.
In the geometrically thin disk with finite optical depth τ0 and uniform in-

cident intensity I0 from the disk equator, the boundary value I(τ0, µ) of the
outward intensity I consists of two parts:

I(τ0, µ) = I0 + I(τ0,−µ), (3.17)

where I0 is the uniform incident intensity and I(τ0,−µ) is the inward intensity
from the backside of the disk beyond the midplane. Determining I(τ0,−µ)
from equation (3.16), we finally obtain the outward intensity as
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where we have used Fs = πI0.
For sufficiently large optical depth τ0, this equation (3.18) reduces to the

usual Milne-Eddington solution:
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Finally, the emergent intensity I(0, µ) emitted from the disk surface for the
finite optical depth becomes
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図 3.1: Normalized emergent intensity as a function of µ for the case without
heating. The numbers attached on each curve are values of τ0 at the disk
midplane. The dashed straight line is for the usual plane-parallel case with
infinite optical depth.

In figure 1, the emergent intensity I(0, µ) normalized by the isotropic value
Ī (= Fs/π) is shown for several values of τ0 as a function of µ.

As is easily seen in figure 1, for large optical depth (τ0 > 10) the angle-
dependence of the emergent intensity is very close to the case for a usual plane-
parallel case with infinite optical depth. Therefore, the usual limb-darkening
effect is seen. Namely, in the case of a semi-infinite disk with large optical depth,
the energy density increases linearly with the optical depth in the atmosphere,
and the temperature increases accordingly. As a result, an observer at a pole-
on position of µ = 1 will see deeper in the disk, where the temperature (and
therefore, the source function) is larger than that observed by an observer at
an edge-on position of µ = 0. Thus, the observed intensity will be higher at
µ = 1. This is just a usual limb-darkening.

For small optical depth, however, the angle-dependence is drastically changed.
When the optical depth is a few, the vertical intensity (µ ∼ 1) decreases due to
the finiteness of the optical depth. That is, we cannot see the ‘deeper’ position

in the atmosphere, compared with the case of a semi-infinite disk. Further-
more, when the optical depth is less than unity, the intensity in the direction of
small µ increases, and the emergent intensity becomes isotropic with a uniform
value I0 at the disk equator; the limb-darkening effect disappears. Indeed, the
limiting case of τ0 ∼ 0, I(0, µ) ∼ Fs/π.

3.2.2 Uniform Heating Case

Now, we consider the case with uniform heating: q+
vis/(κabs+κsca)ρ =constant.

Integrating the equation (3.8) under the following boundary conditions:

F = 0 at τ = τ0,

F = Fs at τ = 0, (3.21)

we obtain
F = Fs

(
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)
. (3.22)

The radiative flux F linearly increases from 0 to the surface value Fs.
Substituting equation (3.22) into equation (3.9), and integrating the resultant

equation under the boundary condition (11), we obtain
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This expression (3.23) for finite optical depth is seen in, e.g., Laor and Netzer
(1989). A similar but more general expression was obtained by Hubeny (1990).
In any case, this expression reduces to the Milne-Eddington solution for suf-
ficiently large optical depth. In the case of finite optical depth, the radiation
energy density and pressure decrease from the midplane to the surface in the
quadratic form. It should be noted that at the midplane of the disk of τ = τ0,
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As already mentioned by Hubeny (1990), the energy density at the disk mid-
plane is the half of the corresponding stellar atmospheric one. This is explained
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by the fact that the radiation from the disk midplane may escape equally to
both sides of the disk.

Since we obtain the radiation energy density E in the explicit form (3.23),
we can now integrate the radiative transfer equation (3.7). After several partial
integrations, we obtain both an outward intensity I(τ, µ) (µ > 0) and an inward
intensity I(τ,−µ) as
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where I(τ0, µ) is the boundary value at the midplane of the disk.
In the case with uniform heating and without the incident intensity, the

boundary value I(τ0, µ) of the outward intensity I is

I(τ0, µ) = I(τ0,−µ), (3.27)

and we finally obtain the outward intensity as
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(3.29)

For sufficiently large optical depth τ0, this equation (3.28) also reduces to
the usual Milne-Eddington solution (19).

Finally, the emergent intensity I(0, µ) emitted from the disk surface for the
finite optical depth becomes
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In figure 2, the emergent intensity I(0, µ) normalized by the isotropic value
Ī (= Fs/π) is shown for several values of τ0 as a function of µ.

As is easily seen in figure 2, for large optical depth (τ0 > 10) the angle-
dependence of the emergent intensity is very close to the case with a usual plane-
parallel case with infinite optical depth. Therefore, the usual limb-darkening
effect is seen, as already stated at the end of section 3.1.
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図 3.2: Normalized emergent intensity as a function of µ for the case with
uniform heating. The numbers attached on each curve are values of τ0 at the
disk midplane. The dashed straight line is for the usual plane-parallel case with
infinite optical depth.

For small optical depth, however, the angle-dependence is drastically changed
similar to the case without heating. In the vertical direction of µ ∼ 1, the
emergent intensity decreases as the optical depth decreases. This is due to the
finiteness of the optical depth. That is, we cannot see the ‘deeper’ position in
the atmosphere, compared with the case of a semi-infinite disk. In the inclined
direction of small µ, on the other hand, the emergent intensity becomes larger
than that in the case of the infinite optical depth. Moreover, when the optical
depth is less than unity, the emergent intensity for small µ is greater than
unity: the limb brightening takes place. Indeed, in the limiting case of τ0 ∼ 0,
I(0, µ) ∼ (Fs/π)/(2µ). This is because that the path length is longer for such a
case of small µ. That is, in this case for low optical depth, the source function
is very uniform. This, coupled with the absence of an isotropic source at the
midplane, is why the geometric effect (longer path length) is dominant and one
finds limb ‘brightening’.


