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4.1 Basic Equations

We here assume the followings: (i) The disk is steady and axisymmetric.
(ii) It is also geometrically thin and plane-parallel. (iii) As a closure relation,
we adopt the Eddington approximation. (iv) The viscous heating rate is con-
centrated at the equator or uniform in the vertical direction. (v) The disk
atmosphere is under the local thermodynamic equilibrium (LTE). In contrast
to the previous study (Fukue, Akizuki 2006), we do not assume the gray atmo-
sphere, but treat the monocromatic radiation and scattering effect. We briefly
mention the validity of the plane-parallel assumption. In the accretion disk the
physical quantities have gradients in the horizontal (radial) direction. How-
ever, the ratio of the radial gradient of the physical quantities to the vertical
gradient is generally on the order of z/r. Hence, the plane-parallel assumption
is valid, as long as the disk is geometrically thin. This is the case for the limb-
darkening except fo very small µ. In other words, the plane-parallel assumption
will violate in the geometrically thick disk, such as a slim disk.

The radiative transfer equations are given in several literatures (Chandrasekhar
1960; Mihalas 1970; Rybicki, Lightman 1979; Mihalas, Mihalas 1984; Shu 1991;

Kato et al. 2008). For the plane-parallel geometry in the vertical direction (z),
the frequency-dependent transfer equation, the zeroth moment equation, and
the first moment equation become, respectively,

µ
dIν

dz
= ρ

[
jν

4π
− (κν + σν) Iν + σνJν

]
, (4.1)

dHν

dz
= ρ

(
jν

4π
− κνJν

)
, (4.2)

dKν

dz
= −ρ(κν + σν)Hν , (4.3)

where µ is the direction cosine (= cos θ), Iν the specific intensity, Jν the mean
intensity (= cEν/4π, Eν being the radiation energy density), Hν the Eddington
flux (Hν = Fν/4π, Fν the vertical component of the radiative flux), Kν the
mean radiation stress (Kν = cPν/4π, Pν the zz-component of the radiation
stress tensor), ρ the gas density, and c the speed of light. The mass emissivity
jν , the absorption opacity κν , and the scattering one σν generally depend on
the frequency. The Eddington approximation is Kν = Jν/3.

Introducing the optical depth, defined by dτν ≡ −ρ (κν + σν) dz, we rewrite
the radiative transfer equations in the familiar form:

µ
dIν

dτν
= Iν − Sν , (4.4)

dHν

dτν
= Jν − Sν , (4.5)

dKν

dτν
=

1
3

dJν

dτν
= Hν . (4.6)

Here Sν is the source function,

Sν =
1

κν + σν

jν

4π
+

σν

κν + σν
Jν = ενBν + (1 − εν)Jν , (4.7)

where we assume LTE and εν is the photon destruction probability:

εν =
κν

κν + σν
. (4.8)

Eliminating Hν from equations (4.5) and (4.6), we have the second order
form of the transport equation:

1
3

d2Jν

dτ2
ν

= Jν − Sν , = εν(Jν − Bν). (4.9)
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The energy equation for matter,

0 = q+
vis − ρ

∫
(jν − 4πκνJν) dν, (4.10)

where q+
vis the viscous-heating rate, is expressed as

q+
vis

4πρ
=

∫
κν (Bν − Jν) dν =

∫
(κν + σν)(Sν − Jν)dν. (4.11)

Finally, the disk total optical depth becomes

τν0 = −
∫ 0

H

ρ(κν + σν)dz, (4.12)

where H is the disk half-thickness.
It should be noted that several analytical expressions for radiative moments

as well as temperature distributions were obtained by several researchers under
the gray approximation (e.g., Laor, Netzer 1989; Hubeny 1990; Hubeny et al.
2005; Artemova et al. 1996; Fukue, Akizuki 2006).

For the internal heating, we consider two extreme cases: (i) The viscous
heating is concentrated at the disk equator and the disk atmosphere is described
by a simple model. (ii) There exists uniform heating in the sense that the
heating per mass is distributed in any frequency range; jν − 4πκνJν does not
depend on the optical depth.

4.2 Simple Case

We show here the simple analytical solution, which is well-known in the stellar
atmosphere with semi-inifinite optical depth, in order to clarify the scattering
effect and the effect of the finite optical depth in the present case.

Similar to the stellar atmosphere, we assume that the Planck function Bν(τν)
linearly depends on the optical depth:

Bν = Bν(0) + bντν , (4.13)

and that the photon destruction probability εν has the same value at all depths.
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図 4.1: Radiative quantities normalized by Bν(0) as a function of the optical
depth for an isothermal case (bν = 0). Thick dashed curves represent Jν , thick
dotted ones Hν , and thick solid ones Sν . The values of the parameter εν are
1, 0.5, and 0.1 from top to bottom for each case.
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In this case equation (4.9) can be expressed as

1
3

d2

dτ2
ν

(Jν − Bν) = εν(Jν − Bν), (4.14)

and solved as a linear differential equation.
Imposing the boundary condition that Jν = Bν for τν → ∞, and that

Jν(0) = cνHν(0) at τν = 0, (4.15)

where cν =
√

3, we have the following solutions (Mihalas, Mihalas 1984).

Jν = Bν(0) + bντν − Bν(0) − bνcν/3
1 + (cν/3)

√
3εν

e−
√

3εντν , (4.16)

Hν =
1
3
bν +

√
εν

3
Bν(0) − bνcν/3
1 + (cν/3)

√
3εν

e−
√

3εντν , (4.17)

Sν = Bν(0) + bντν − (1 − εν)
Bν(0) − bνcν/3
1 + (cν/3)

√
3εν

e−
√

3εντν . (4.18)

These analytical solutions normalized by the surface value Bν(0) are shown in
figures 1 and 2 for the isothermal case (bν = 0) and the case with temperature
gradient (bν/Bν(0) = 3/2), respectively. The parameter cν is set to be

√
3.

In figure 1 radiative quantities for an isothermal case, which are well-known
solutions, are shown. As the photon destruction probability εν decreases, the
source function Sν and its surface value also decrease; this is just the scattering
effect or so-called

√
εν-law.

In figure 2 radiative quantities for a case with temperature gradient are
shown. In this case the source function and its surface value do not depend
on the value of εν so much, and the scattering effect is not so significant.
This is also well-known in the stellar atmosphere, but has not been sufficiently
recognized in the field of the accretion disk atmosphere, as already mentioned
in the introduction.

Using above solutions, we can also solve the transfer equation (4.4) to obtain
the intensity Iν(τν). In a geometrically thin disk with finite optical depth τν0

and uniform incident intensity Iν0 from the disk equator, the boundary value
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図 4.2: Radiative quantities normalized by Bν(0) as a function of the optical
depth for a case with temperature gradient (bν/Bν(0) = 3/2). Thick dashed
curves represent Jν , thick dotted ones Hν , and thick solid ones Sν . Thin solid
curves denote the Planck function Bν . The values of the parameter εν are 1,
0.5, and 0.1 from top to bottom for each case.
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Iν(τν0, µ) of the outward intensity consists of two parts:

Iν(τν0, µ) = Iν0 + Iν(τν0,−µ), (4.19)

where Iν0 is the uniform incident intensity and Iν(τν0,−µ) is the inward in-
tensity from the backside of the disk beyond the midplane (Fukue, Akizuki
2006).

After some manipulations, we finally obtain the outward intensity for the
present simple case with finite optical depth.

Iν(τν , µ) = Iν0e
(τν−τν0)/µ + Bν(0) + bνµ + bντν

−2bνµe(τν−τν0)/µ − [Bν(0) − bνµ]e(τν−2τν0)/µ

− 1 − εν

1 + µ
√

3εν

Bν(0) − bνcν/3
1 + (cν/3)

√
3εν

[
e−

√
3εντν − eτν/µ−(1+µ

√
3εν)τν0/µ

]
− 1 − εν

1 − µ
√

3εν

Bν(0) − bνcν/3
1 + (cν/3)

√
3εν

[
eτν/µ−(1+µ

√
3εν)τν0/µ − e(τν−2τν0)/µ

]
.(4.20)

Finally, the emergent intensity Iν(0, µ) emitted from the disk surface for the
finite optical depth becomes

Iν(0, µ) = Iν0e
−τν0/µ + Bν(0) + bνµ

−2bνµe−τν0/µ − [Bν(0) − bνµ]e−2τν0/µ

− 1 − εν

1 + µ
√

3εν

Bν(0) − bνcν/3
1 + (cν/3)

√
3εν

[
1 − e−(1+µ

√
3εν)τν0/µ

]
− 1 − εν

1 − µ
√

3εν

Bν(0) − bνcν/3
1 + (cν/3)

√
3εν

[
e−(1+µ

√
3εν)τν0/µ − e−2τν0/µ

]
. (4.21)

The terms on the right-hand side of this emergent intensity (4.21) have the
following meanings. The first term is the extincted intensity from the equator,
the second and third terms the thermal radiation from the surface under the
temperature gradient, the fourth and fifth the thermal radiation from this and
backside atmospheres, respectively. The sixth term is the scattering radiation
from the upper atmosphere, while the seventh is the one from the backside
beyond the equator.

For sufficiently large optical depth (τν0 → ∞), this equation (4.21) reduces
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図 4.3: Normalized emergent intensity as a function of µ for an isothermal case
(bν = 0). The values of the disk optical depth τν0 are 10 (solid curves), 1
(dashed ones), and 0.1 (chain-dotted ones). The values of the parameter εν are
1, 0.5, 0.1, and 0.01 from top to bottom for each case.

to the usual solution,

Iν(0, µ) ∼ Bν(0) + bνµ − 1 − εν

1 + µ
√

3εν

Bν(0) − bνcν/3
1 + (cν/3)

√
3εν

. (4.22)

In the limit of the small optical depth (τν0 ∼ 0), this solution (4.21) becomes
as

Iν(0, µ) ∼ Iν0

(
1 − τν0

µ

)
+

[
Bν(0) − (1 − εν)

Bν(0) − bνcν/3
1 + (cν/3)

√
3εν

]
2τν0

µ
.(4.23)

The first term on the right-hand side is again the uniform radiation from the
equator, while the second term means the thermal and scattering radiation
from the total disk thickness of both side (2τν0) under the limb-darkening.

The emergent intensities normalized by the surface value Bν(0) are shown
in figures 3 and 4 for the isothermal case (bν = 0) and for the case with a
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図 4.4: Normalized emergent intensity as a function of µ for a case with tem-
perature gradient (bν/Bν(0) = 3/2). The values of the disk optical depth τν0

are 10 (solid curves), 1 (dashed ones), and 0.1 (chain-dotted ones). The values
of the parameter εν are 1, 0.5, 0.1, and 0.01 from top to bottom for each case.

temperature gradient (bν/Bν(0) = 3/2), respectively. The parameter cν is set
to be

√
3, and the equatorial heating rate Iν0 is set to be zero.

In figure 3 the emergent intensity for the isothermal case is shown. When
the optical depth is sufficiently large (τν0 = 10, solid curves), the emergent
intensity decreases, as the photon destruction probability εν decreases. This is
again the scattering effect (the

√
εν-law). Furthermore, in the present case of

finite optical depth, the emergent intensity towards the polar direction reduces
as the disk optical depth decreases. That is, the disk becomes transparent in
the vertical direction, while it is not in the edge on direction.

In figure 4 the emergent intensity for a case with temperature gradient are
shown. In this case the emergent intensity does not depend on the value of
εν so much, and the scattering effect is not so significant. On the other hand,
the effect of the finite optical depth becomes significant for small τν0. That
is, for small optical depth the angle-dependence is drastically changed. This is
because we cannot see the ‘deeper’ position in the atmosphere, compared with
the case of a semi-infinite disk. This is a characteristic nature of the accretion
disk atmosphere (cf. Hubeny 1990; Fukue, Akizuki 2006).

4.3 Uniform Heating Case

Now, we consider the case with uniform heating. In order for the right-
hand of equation (4.11) to be independent of the optical depth, the necessary
condition is that the term (κν + σν)(Sν − Jν) does not depend on the optical
depth. In the scattering dominated atmosphere, we then assume that

Sν − Jν = qν (4.24)

does not depend on the optical depth.
In this case we can easily integrate equations (4.5) and (4.6), under the

boundary condition of Hν = 0 at τν = τν0, to obtain the solutions,

Hν = Hν(0)
(

1 − τν

τν0

)
, (4.25)

3Kν = Jν = Hν(0)
(

cν + 3τν − 3τ2
ν

2τν0

)
, (4.26)
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図 4.5: Radiative quantities normalized by Bν(0) as a function of the optical
depth for large optical depth (τν0 = 10). Dashed curves represent Jν , dotted
ones Hν , and solid ones Bν and Sν . The values of the parameter εν are 1 (thin
curves) and 0.1 (thick ones).

where Hν(0) = qντν0. These solutions for finite optical depth are essentially
same as those obtained under the gray approximation in the previous studies
(e.g., Laor, Netzer 1989; Hubeny 1990; Wang et al. 1999; Fukue, Akizuki 2006).
It should be noted that these solutions reduce to the Milne-Eddington solution
for sufficiently large optical depth.

Furthermore, the source and Planck functions become, respectively,

Sν = Hν(0)
(

cν + 3τν − 3τ2
ν

2τν0
+

1
τν0

)
, (4.27)

Bν = Hν(0)
(

cν + 3τν − 3τ2
ν

2τν0
+

1
εντν0

)
. (4.28)

These analytical solutions normalized by the surface value Bν(0) are shown in
figures 5 and 6 for large and small optical depths, respectively. The parameter
cν is set to be

√
3.
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図 4.6: Radiative quantities normalized by Bν(0) as a function of the optical
depth for large small depth (τν0 = 1). Dashed curves represent Jν , dotted ones
Hν , and solid ones Bν and Sν . The values of the parameter εν are 1 (thin
curves) and 0.1 (thick ones).
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In figure 5 radiative quantities for large optical depth (τν0 = 10) are shown.
When the photon destruction probability εν is unity (thin curves in figure 5),
both the mean intensity Jν and source function Sν are almost same as the
Planck function Bν . Indeed, in the limit of τν0 → ∞, Jν = Sν = Bν . When εν

becomes small (thick curves in figure 5), on the other hand, the mean intensity
Jν and source function Sν are somewhat smaller than the Planck function Bν ,
but the difference is not so large; the scattering effect is not significant. This
is because there is a temperature gradient in the case of internal heating. In
contrast to the isothermal atmosphere, where the scattering effect becomes
significant, it is not so significant in the disk with internal heating and the
surface temperature is close to the effective one, since the observed photons
come from deep inside at the large optical depth (cf. Laor, Netzer 1989; Hui
et al. 2005).

In figure 6 radiative quantities for small optical depth (τν0 = 1) are shown.
In this case the mean intensity Jν and source function Sν are much smaller
than the Planck function Bν . This is understood as a combination effect of
the scattering and the finite optical depth. Even if there is no scattering (thin
curves in figure 6), the mean intensity Jν is smaller than the Planck function Bν ,
although Sν = Bν . This is because of the finite optical depth; the atmosphere
becomes translucent as τν0 decreases. Furthermore, when εν becomes small, the
source function Sν as well as the mean intensity Jν become much smaller than
the Planck function Bν . This is due to the scattering effect; in the case of finite
optical depth there is no deep inside from which photons originate, and the
scattering effect recovers. In such a case, similar to the isothermal atmosphere,
where the

√
εν-law holds, the surface temperature can be remarkably larger

than the effective temperature.
It should be noted that in the usual case of the isothermal atmosphere

Sν(0) =
√

ενBν(0); this is the
√

εν-law. In the present case of finite optical
depth, on the other hand,

Sν(0) =
1 + cντν0

1 + cνεντν0
ενBν(0), (4.29)

and this is an εν-law.

As seen in analytical solutions (4.25)-(4.28), the photon destruction probabil-
ity εν appears only in the Planck function Bν . Since the source function (4.27)
does not include εν , the solution of the intensity also does not contain εν . As
a result, the intensity is apparently free from the scattering effect. However,
since the ratio of the coefficient of the intensity to the thermal component is

Hν(0) =
εντν0

1 + cνεντν0
Bν(0), (4.30)

there implicitly exists the scattering effect; the εν-law for small optical depth.
Using above solutions, we can also solve the transfer equation (4.4) to obtain

the intensity Iν(τν). In the case of internal heating, we impose the boundary
condition at the disk midplane:

Iν(τν0, µ) = Iν(τν0,−µ). (4.31)

After some manipulations, we finally obtain the outward intensity for the
present simple case with finite optical depth (cf. Fukue, Akizuki 2006).

I(τν , µ) = Hν(0)
[
cν + 3µ + 3τν

+
1

τν0

(
1 − 3µ2 − 3µτν − 3

2
τ2
ν

)
−

(
cν − 3µ +

1
τν0

− 3µ2

τν0

)
e(τν−2τν0)/µ

]
. (4.32)

For sufficiently large optical depth τν0, this equation (4.32) also reduces to the
usual Milne-Eddington solution.

Finally, the emergent intensity Iν(0, µ) emitted from the disk surface for the
finite optical depth becomes

Iν(0, µ) = Hν(0)
[
cν + 3µ +

1
τν0

(
1 − 3µ2

)
−

(
cν − 3µ +

1
τν0

− 3µ2

τν0

)
e−2τν0/µ

]
. (4.33)

In the limit of the small optical depth (τν0 ∼ 0), this solution (4.33) becomes
as

Iν(0, µ) ∼ Hν(0)
2
µ

=
ενBν(0)

1 + cνεντν0

2τν0

µ
. (4.34)
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図 4.7: Normalized emergent intensity as a function of µ. The values of the disk
optical depth τν0 are 10 (solid curves), 1 (dashed ones), and 0.1 (chain-dotted
ones). The values of the parameter εν are 1, 0.5, 0.1, and 0.01 from top to
bottom for each case.

This is just the thermal emission from the optically thin disk with optical depth
2τν0.

The present solutions are formally same as those of the previous result ob-
tained by Fukue and Akizuki (2006) under the gray approximation, although
the present case is frequency-dependent.

The emergent intensity normalized by the surface value Bν(0) is shown in
figures 7. The parameter cν is set to be

√
3.

As is seen in figure 7, for large optical depth (τν0 = 10) the angle-dependence
of the emergent intensity is close to the usual plane-parallel case with infinite
optical depth. Therefore, the usual limb-darkening effect is seen. For small op-
tical depth, however, the angle-dependence is drastically changed similar to the
case without heating. In the vertical direction of µ ∼ 1, the emergent intensity
decreases as the optical depth decreases. This is due to the finiteness of the

optical depth. That is, we cannot see the ‘deeper’ position in the atmosphere,
compared with the case of a semi-infinite disk. In the inclined direction of
small µ, on the other hand, the emergent intensity becomes larger than that
in the case of the infinite optical depth. Moreover, when the optical depth is
less than unity, the emergent intensity for small µ is greater than that for large
µ: the limb brightening takes place. In addition, as εν decreases, the emergent
intensity also decreases due to the scattering effect.


