110

Relativistic Radiative
Transfer Equations

General : Fixed Frame
variables [ EF'P in physics

After Kato, S. et al. 2008, “Black-Hole Accretion Disks”

In this appendix we derive the basic equations for radiation hydrodynam-
ics (photohydrodynamics) within the framework of special relativity. We first
give the metric and quantities of the radiation fields, and then show the basic

equations, including matter coupling.

11.1 Metric and Energy-Momentum Tensor

The full set of basic equations for photohydrodynamics can be found in sev-
eral literature (e.g., Lindquist 1966; Anderson and Spiegel 1972; Hsieh and
Spiegel 1976; Thorne 1981; Fukue et al. 1985; Park 2006; Takahashi 2007). It
is usually expressed in a general form. In this appendix we derive and write
explicitly the basic equations for relativistic radiation hydrodynamics, which
are correct within the framework of special relativity. The derivation is based
on Hsieh and Spiegel (1976), while correcting minor errors in their paper. In
this book the (+, —, —, —) signature is adopted, and the Greek suffixes a, 3, 7,
.-+ take values of 0, 1, 2, and 3, while the Latin suffixes i, j, k, --- take values
of 1, 2, and 3. The semicolon denotes not covariant differentiation but partial

differentiation, since we do not consider the space-time curvature here.

(a) Metric

The square of the invariant line element, ds?, is written as
ds? = 2dr? = g, dz"dx” (11.1)

where ¢ is the speed of light, 7 the proper time, z* the space-time coordi-
nates (z° = ct in this appendix), and guv the space-time metric. The three-
dimensional part of the metric, v;;, is defined by ~v;; = —gi;.

In the case of cylindrical coordinates (r, ¢, z), the line element (3.1) becomes,

in a flat space-time,

ds® = Adt* — dr* — r?dp® — d2*. (11.2)

(b) Four-velocity of matter

The four-velocity u* of matter is defined by

= % - (’y’yi) — (1, %) : (11.3)
where
02\ "2
N = (1 - c2> , (11.4)
v? = vt = yoof = —gipoto®. (11.5)

The covariant components become

v Ui
Uy = G’ = ('y, —fy?) . (11.6)

It should be noted that u,u* = g, utu” = 1.
(¢) Four-momentum of photon
The four-momentum k* of a photon is defined by
k= (v,vl*) = v (1,1), (11.7)

where v is the photon frequency and [ is the direction cosine vector of a photon.

The covariant components become

k= v (1,-1). (11.8)
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Since 1 = 1, the contraction of the four-momentum is null:

kukt =% (1-17) =0. (11.9)

(d) Doppler and aberration effects
The four-velocity u, and the four-momentum k* expressed in comoving

frames are, respectively,

(1,0), (11.10)
40 (1,l0)7 (1111)

Up

k.u

where the subscript 0 means the values measured in the comoving (fluid) frame.

Using equations (3.6) and (3.7), we have

-1
ukt =yv — 'yuv— = 1. (11.12)
c
Thus, the transformation of the photon frequency between the inertial and

comoving frames (relativistic Doppler effect) becomes

v-l

v = vy (1 - > , (11.13)

c

N
I

y
oy (1 +2 - 0) . (11.14)

Similarly, the transformation of the direction cosine (relativistic aberration

effect) becomes

v y—1lwv-1 v
ly, = — | —_— = — 11.1
o = 2]+ (Tat-0)Y. (11.15)
—1lw-l v
L= [lo + ( YR +7> J (11.16)
The transformation of the solid angle is
-2
i = L0 [ (1 - ”lﬂ dq, (11.17)
1%} dVQ

o o ()]

(e) Quantities of radiation fields
The specific intensity I, is related to the photon occupation number n, by
I, = (2hv3/c?®)n,,. The relativistic invariant is not I,,, but I, /v3:

L _ L
%

3 I (11.19)

Using these quantities, the energy-momentum tensor of the radiation field is
defined as

2h 1
R == [ M dvdQ = - / L1M1” dvdS, (11.20)
c c
where [ = (1,1%). Hence, the components of R*¥ become

1

R = f/L,dz/dQ =E, (11.21)
c

0i 1 i _ 1.

RY = = [ LldvdQ=-F' (11.22)
c c

R = - / LIV dvdQ = P, (11.23)
c

where FE is the radiation energy density, F? the radiative flux, and P%¥ the
radiation stress tensor.
Integrating over the frequency, we obtain the following frequency-integrated

quantities:

IE/I,,dm EE/E,,du, FiE/F;’du, PijE/ijdu. (11.24)

(f) Transformation rules
The transformation of the frequency-integrated intensity I between the in-

ertial and comoving frames is

Iy = (%)41 - [7 (1 - ”cl)rl. (11.25)

Integrating equation (3.25) over a solid angle, we obtain the transformation
rule of E:

. F i
By = 2 (E — 2”02 + UC“"“ P““) (11.26)



Multiplying equation (3.25) by [ and integrating the resultant equation over

a solid angle, we have the transformation rule of F*:

i ; y—1\v-F vy—=1lvvk | ik
10—7{1 {<> 2/02) 2 VE - v/ 2 PP vt~ vyl
(11.27)

Multiplying equation (3.25) by lélé and integrating the resultant equation

over a solid angle, we have the transformation rule of P%:
pii — pi 01 V' pit 4 ok pik
0 2 /2 \ 2 c?
—1\* v'? vpu, PF™ vid
(72 2) 3tV 5 E
v?/c c c

o2
VIFT QI F? y—1vvv F
— -2 . 11.2
’y( c? * c? ) 7112/(:2 2 2 (11.28)

(g) Energy-momentum tensor

The energy-momentum tensor for an ideal gas, TH | is
" = (e + p) u"u” — pg"", (11.29)

where ¢ is the internal energy per unit proper volume and p is the pressure
measured in the comoving frame (¢ +p is the enthalpy per unit proper volume).

The energy-momentum tensor for radiation, R*", is

1 .

E 1ipi

R;w_< L %ij ) (11.30)
¢

where E is the radiation energy density, F* the radiative flux, and P% the
radiation stress tensor.
The momentum and energy conservations are expressed, respectively, as
(T,)+RS), = 0, (11.31)
"(T)+RS), =0, (11.32)

where the semicolon means the partial differentiation in the present case.

11.2 Equations of Radiative Transfer

We first derive the basic equations describing the behavior of radiation in-

teracting with matter within the framework of special relativity.

11.2.1 Transfer Equation

As in the case of a non-relativistic regime (appendix D), a change in the
specific intensity is expressed by the transfer equation, although it should be
written down in a Lorentz-invariant form.

By means of the Lorentz invariant f (= I, /v® = I,0/13), we can write the
transfer equation of the form (Hsieh and Spiegel 1976):

uw 9f

oxH

= pla= )= piit [0 D IOV dsr
—|—p/<;f,coa/qﬁy(l,l’)f(l’)z/dl/dQ’, (11.33)

where p is the proper mass density, « the invariant form of the emission co-
efficient, § the invariant form of the absorption coeflicient, x5g* the scattering
opacity in the comoving frame, and ¢, the scattering redistribution function.
It is noted that vdvdQ) (= v'dv'dSY') is also a relativistic invariant.

Of these, o and [ are related, respectively, to the mass emissivity j,o and

abs in the comoving frame by

juo = 4mvia and KA = ﬁ (11.34)
Yo

the mass absorption coeflicient x2,

For Thomson scattering, the scattering redistribution function in the comoving

frame is 5 )
2
¢ =1 {1 + (I - 1)) } (v — vh) 1= (11.35)
It should be noted that [ ¢,vodvgdQo = 1) and [ ¢, v{drydQ = vp.
Substituting these quantities into equation (3.33), the transfer equation is

rewritten as

6f _ qu abs sca
{atﬂL(l V)f} = i PYokyo [ — Prokyg




3 sca 2 dQ/
+ PR VO/ [1+ (Io - 15) }f(l’)TWO. (11.36)

Furthermore, replacing f by I,, (or I,0), we finally obtain the (angle-dependent)

radiative transfer equation in the mixed frame:
101, v\ 2
- I vA Y S

c Ot + ( ) (Vo) p

jVO abs sca 3 sca € @7
X {47T — (KBS + K5) Lo + 1700 o (Euo + lOiZOij%):l ;o (11.37)

where we use the definitions of E and P%. This transfer equation (3.37) seems
to be similar to the non-relativistic one (D.7), except for the v/vp-term. It
should be noted, however, that the left-hand side is written by the quanti-
ties evaluated in the inertial (fixed) frame, while the right-hand side by the

quantities in the comoving (fluid) frame.

11.2.2 Moment Equations

Next, we derive the (frequency-integrated) moment equations. After a long
time since Eddington, who first introduced a moment expansion to radiation
transfer in the early 20th century, moment equations for relativistic radia-
tion transfer have been derived by several studies for a special relativistic case
(Thomas 1930; Hazlehurst and Sargent 1959; Castor 1972; Mihalas and Miha-
las 1984) and in a curved space-time (Lindquist 1966; Anderson and Spiegel
1972; Thorne 1981; Udey and Israel 1982; Nobili et al. 1993; Park 2003, 2006;
Takahashi 2007). A complete set of moment equations for a relativistic flow is
given by the projected symmetric trace-free (PSTF) formalism (Thorne 1981).

Integrating the transfer equation (3.37) over the frequency, with the help of
the Lorentz transformation (3.14) [dv = (dv/dvy)dvy = v(1 + v - lg/c)dw), we

obtain a frequency-integrated angle-dependent transfer equation:

181 1o\°
6+(l-V)I:p’y3<l+vco>

c Ot

% |:-]0 _ (Kgbs_’_ﬁaca) IO+§Hsca c

e R (EO +10ilojpgj)} , (11.38)

where
IE/LJCZV, IO = /Ljodllo, (1139)
Ey = / E,odvy, Py = / P dvy, (11.40)
S - abs sca — 1 abs sca
Jo = /]Vodl/o, Rg + Ko = T (HDO + Ry0 ) IuOdVO- (1141)
0

Integrating the transfer equation (3.38) over a solid angle, with the help of
a transformation of the solid angle (3.18), we obtain the zeroth-moment of
equation (3.38):

o, ort
ot oxk

abs

= pv (jo — esd> Eo) — py (k5> + k)

F
0 (11.42)
Integrating the transfer equation (3.38) over a solid angle, after being multi-

plied by the direction cosine, with the help of transformations (3.18) and (3.16),

we obtain the first-moment of equation (3.38):

1 oFt  oP* vt ab
ot T o~ P Vo engE)
abs scay VT 1 vi
—p (K§™ + £5*) ——5—— (v - Fo)
v C
1 . .
—=p (KPS + K5™) F. (11.43)

In general, such a moment expansion gives an infinite set of equations. In
order to make the transfer problem tractable, one must truncate the expansion
at the finite order by adopting a suitable closure assumption. For example, we
here truncate the equations at the second order, and we introduce some addi-
tional closure relation among E, F*, and P, as given in the next subsection.

As already noted, the left-hand sides of these moment equations (3.42) and
(3.43) are described by the quantities in the inertial (fixed) frame, while the
right-hand sides by those in the comoving (fluid) frame. Thus, using the trans-
formation rules (3.26)—(3.28), let us rewrite the right-hands side of these mo-

ment equations. After several manipulations, we finally obtain the moment



equations expressed by the quantities in the inertial (fixed) frame:

191 R v-1\ "

. 4 —2

Jo abs sca) .4 v-l "{(S)Ca —2 v-l

— — 1—-—) I - 1—-—
X[zm (R + 15 ( c) T 1 c

2
v-1 v-l 2 w-l v-F
294 (1 - — 1I-— | (5 -—
) () ()
1\? vjv; P
Hil;ePY — 292 <1>leJP”+2’y4 (1”) ity } :
C C
(11.44)
aE aFk bb abb/v.F
m*w‘”(ﬂo_mo R )
2 . F
+m3mgca[ E+ “Jpw (1+1C’2>”C } (11.45)
18F’L apzk Ui- abs i abs 7
2ot ok T<c‘7°”0bF P k>
) . . (2 - F
p’y de |:Fz_ E,Uz_vkpzk +’Y2’Ul< ’02 UJUkPJk:
C C C
(11.46)

11.2.3 Closure Relation

As a closure relation, we usually adopt the Eddington approximation in the

comoving frame:
P = —EO (11.47)
It should be noted that we here do not consider the radiative viscosity. In a

relativistic regime, this closure relation should be modified, as discussed in the

next subsection.
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Substituting the transformation rules (3.26)—(3.28) into this relation (3.47),

we obtain the closure relation in the inertial frame:

pii _ ij")ﬂ Vi Um prm 72 (Uiuk pik 4 vivy, Plk)

2

3 c2 y+1\ ¢ c2

2 2 ij ig0J

¥ V! UkUm e 0 v-F 90"V

P E— — E

+(’y+1> 2 2 37 ( c? ) T
n v I n VvIF? P v v v F
T\ e c? 77—!— 1 ¢z 27

(11.48)

To the first order in v/¢, the closure relation becomes (Hsieh and Spiegel
1976)
Y viFI pIFt 2 v F
PIl=—F+ — + — — =Y ——. 11.49
3 + c? + c? 3 c? ( )

11.3 Relativistic Regimes

The radiation moment formalism is quite convenient and essential, especially
in a relativistic regime, and it is a powerful tool for tackling problems of rel-
ativistic radiation hydrodynamics (e.g., Thorne et al. 1981; Flammang 1982,
1984; Nobili et al. 1991, 1993; Park 2001, 2006 for spherically symmetric prob-
lems; Takahashi 2007 for the Kerr metric). However, its validity is never known
unless a fully angle-dependent radiation transfer equation is solved. Thus, the
relativistic moment equations with a closure relation must be carefully treated,
and applied to black-hole accretion flows, relativistic jets and winds, and rela-
tivistic explosions, such as gamma-ray bursts.

Actually, the pathological behavior in relativistic radiation moment equa-
tions has been pointed out and examined (Turolla and Nobili 1988; Nobili et
al. 1991; Turolla et al. 1995; Dullemond 1999). Namely, the moment equa-
tions for radiation transfer in relativistically moving media can generally have
singular (critical) points. As a result, solutions behave pathologically in a rela-
tivistic regime. The appearance of singularities is supposed to be related to the
approximation of the full transfer equations with a finite number of moments
(Dullemond 1999).



For example, in one-dimensional relativistic flows using the closure relation
(3.47), where the moment equations are truncated at the second order, the sin-
gularity appears when the flow velocity v becomes +¢/ /3, which corresponds
to the relativistic sound speed (Turolla and Nobili 1988; Turolla et al. 1995).
Hence, we cannot obtain solutions accelerated beyond ¢/v/3, altough there ex-
ists a decelerating solution (Fukue 2005).

The invalidity of the Eddington approximation in such a relativistic flow can
be understood as follows. In adopting the Eddington approximation (3.47), we
assume that within the photon mean-free path the radiation field is isotropic
in the comoving frame. However, in the relativistic regime, where the veloc-
ity gradient becomes large and there exist the Doppler and aberration effects
of photons, the isotropy of the radiation field may break down even in the
comoving frame.

For example, the photon mean-free path ¢ in the comoving frame is ¢ ~
1/(kp), where k is the opacity measured in the comoving frame and p is the
proper density. When there exists a (strong) velocity gradient, say dv/ds, the

velocity increase at the distance of £ is estimated as

dv dv  d
L (11.50)

Ap = ¢ % —
Y s kpds — dr’

where 7 (= kps) is the optical depth. In order for the radiation fields to be
isotropic in the comoving frame, this velocity increase should be sufficiently
smaller than the speed of light. In such a case, we should modify the closure
relation in the case of subrelativistic to relativistic regimes, as in the case of

optically thick to thin regimes.

11.3.1 Velocity-Dependent Variable Eddington Factor

In order to improve the situation we are confronted with, instead of the
usual Eddington approximation, we can adopt a wvariable Eddington factor,
which depends on the flow velocity 5 (= v/c) and the velocity gradient dS/dr
as well as the optical depth 7 (Fukue 2006; Akizuki and Fukue 2007; Fukue

2007b; Koizumi and Umemura 2007). In one-dimensional flows the variable

Eddington factor f(r, ) is generally defined as

Py = f(r, 8)Fo, (11.51)

where Fy and P, are the radiation energy density and the radiation stress
tensor in the comoving frame, respectively. The closure relation in the inertial

frame for one-dimensional flows then becomes

cP(1— f5%) = cE(f - %) + 2FB(1 - f), (11.52)

where F, F', and P are the radiation energy density, the radiative flux, and the
radiation pressure in the inertial frame, respectively.

The function f(7,3) must reduce to 1/3 or appropriate values in the non-
relativistic limit of § = 0, whereas it would approach unity in the extremely
relativistic limit of 8 = 1. Furthermore, in the sufficiently optically thick
regime this function approaches 1/3 except for 8 = 1, while in the optically
thin limit it reduces to an appropriate form determined by the geometry under

the considerations.! The appropriate form is now under construction.

11.4 Matter Coupling

We can now write the basic equations for matter (Hsieh and Spiegel 1976;
Fukue et al. 1985; Park 2006 for the Schwarzschild metric; Takahashi 2007 for

the Kerr metric).

(a) Mass conservation

The particle number conservation is

I — 1 9 Y —
(nut)., = 7= 0 (vV=gnut) =0, (11.53)

n the plane-parallel case, for instance, the variable Eddinton factor in the optically thin
limit is analytically derived as

fe 1—38+ 382
C3-30+p2



where z* is the space-time coordinates, u* the four-velocity, and n the proper
number density.

In the three-dimensional form, the mass conservation becomes

(o) + div(pyo) = 0 (11.54)

where p (= nmc?) is the proper density.

(b) Momentum conservation

The relativistic equations of motion, (T}" + Ri#)'u = 0, are written as
ou? » » , Op
(e+p) (u“ D + I‘Lﬂﬂu”) - (g“‘ - ulu”) B e u”)R# -
(11.55)

where ¢ is the internal energy per unit proper volume, p the pressure measured

in the comoving frame, T"” the energy-momentum tensor of matter, and R"*”

the stress-energy tensor of radiation.
The right-hand side of equation (3.55) are, from (3.30), (3.42), (3.43), (3.45)
and (3.46),

—(g" —u) R,
1 OF* op*
- <28t * w)
72, OE  OFF 1 9Fi  9pi*
2" {‘ (aﬁm) T (aaﬁ ot )]

_ P ( abs _’_Hsca) |:F5 + Y vi(,v FO):|
Cc

pv abs sca

7 (1 + i)

% |:F172Evzvkpzk+,)/2vz( 172 vjvkpjk>:|
C C

(11.56)

Thus, the relativistic equations of motion are

ou’ ;
i w, v
c( 8M+quu>

c? . . dp pc® 1

— U g e )
s+p(g w >8a:“ e+pc

. 1.
x [Fg + 77@1(1; : Fo)}

( abb_'_HSCd)

2 ) . o 2
_ c (g’” _ uzu”) P + pc
eE+p

e g mbs sca
ozt 5+pc( +ho )

2 <21) 2F vjvkpjk)}
c c2

X [Fl —~2Evt — u, P 4
(11.57)

(c) Energy conservation

The energy conservation, u#(T,” + Ruu);v = 0, is written as
L9 (vV=geu") + —=— (V=gu"') = —u"R/ ., (11.58)
=g Ozt ./ 8 z v
The right-hand side of equation (3.58) is, from (3.30), (3.42), (3.43), (3.45)
and (3.46),

v (OE  OF* yv; (1 OF" QP

_urRY. =L (22T il o

R c (815 * oz o \a ot * dxk
= —g (jo - cm%bSEo)

2 2v-F )
_ 2 <_90 b erabSE — pabs SV abs Vil “’“Pl’“) (11.59)
c 2 c

Thus, the energy equation is

T VA e (V)

= —p(jo — crg”Eq)
j - F ;

= 4 (_Jg Ry — R T gt P@’f) (11.60)
5y c

(d) Sub-relativistic Regime



To the first order of (v/c), the equations of motion and energy equation for

matter are written as, respectively,

ov 1
—+ (- V)v = -Vy—-Vp
ot p
abs sca )
TR (p By - P) (1161
c
9 p — 1 + : abs abst -F
(at+v.V>e+pVU—pq — jo+ criPE — K — (11.62)

where v is the velocity, ¢ the gravitational potential, p the pressure, e the
internal energy per unit mass, and ¢* the (viscous) heating rate per unit volume
(Hsieh and Spiegel 1976; Fukue et al. 1985).

The equations for radiation are, on the other hand,

OF . v-F
o TVF=0r {jo — kP E + (k5P — Kk5™) — } , (11.63)
1 8Fi aPik 14 vi . abs i abs ik
2o T ok T C<CJO‘“O F o mgmon P
P sea ( Fi — Byl — y, Pk ) , (11.64)
C

5 v'F7 wIFt 20 F
+

P = B+ — 5320 (11.65)

11.5 Plane-Parallel Expression

For a relativistically moving atmosphere in the plane-parallel geometry (z),
the hydrodynamic equations and transfer equations become as follows (Fukue
2006, 2007a, b).

For matter, the continuity equation is
pcu = pyPBe = J (= const.), (11.66)

where p is the proper gas density, u the vertical four velocity, J the mass-loss

rate per unit area, and ¢ the speed of light. The four velocity u is related to

the proper three velocity v by u = v8 = vv/c, where « is the Lorentz factor,

y=vV1+uz=1/\/1—-(v/c)2

The equation of motion is

a8
dz
Ly 5 ¢ dp

dz K e+pdz

2 abs sca
+
Epjpwv?» F(1+ () — (cE+ cP)ﬁ] ;. (11.67)

d
CQUj — 243
dz

where 1 is the gravitational potential, p the gas pressure, k3> and x5 are the

absorption and scattering opacities (gray), defined in the comoving frame, F
the radiation energy density, F' the radiative flux, and P the radiation pressure
observed in the inertial frame. The first term in the square brackets on the
right-hand side of equation (3.67) means the radiatively-driven force, which is
modified to the order of u?, whereas the second term is the radiation drag force,
which is also modified, but roughly proportional to the velocity.
When the gas pressure is ignored, the advection terms of the energy equation
are dropped, and heating is balanced with the radiative terms,
q* . abs 2 abs 2 abs
027—<j0—l-€0 cEy® — k5P cPu® + 2k F’yu), (11.68)

where ¢ is the internal heating and j is the emissivity defined in the comoving
frame. In this equation (3.68), the third and fourth terms on the right-hand
side appear in the relativistic regime. Under the « prescription, the viscous-
heating rate is proportional to the pressure, and therefore, may depend on
z.

For radiation, the frequency-integrated transfer equation (3.44), the zeroth
moment equation (3.45), and the first moment equation (3.46) become, respec-
tively:

e A (e R RO
Ko™ 3 2{[ (1= B)? (1-p)?1—-p?

w0\ U 2

+ ckE



(b —B)*
[ d ]
o (=B (=81
| e
% = 97 | o — KPCE + K (CE + cP)y B
R FB = R F(L+ 32)0°8 |

Jr}].

—RPFYA(L+ %) + KB + cP)y6 |

where p = cos 6.

Finally, a closure relation is

cP(1— f3%) = cB(f - §*) + 2FB(1 — f),

(11.69)

(11.70)

(11.71)

(11.72)

where f(7, 3) is the variable Eddington factor depending on the velocity as well

as the optical depth.
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