
第11章 Relativistic Radiative

Transfer Equations

General : Fixed Frame
variables IEFP in physics

After Kato, S. et al. 2008, “Black-Hole Accretion Disks”

In this appendix we derive the basic equations for radiation hydrodynam-
ics (photohydrodynamics) within the framework of special relativity. We first
give the metric and quantities of the radiation fields, and then show the basic
equations, including matter coupling.

11.1 Metric and Energy-Momentum Tensor

The full set of basic equations for photohydrodynamics can be found in sev-
eral literature (e.g., Lindquist 1966; Anderson and Spiegel 1972; Hsieh and
Spiegel 1976; Thorne 1981; Fukue et al. 1985; Park 2006; Takahashi 2007). It
is usually expressed in a general form. In this appendix we derive and write
explicitly the basic equations for relativistic radiation hydrodynamics, which
are correct within the framework of special relativity. The derivation is based
on Hsieh and Spiegel (1976), while correcting minor errors in their paper. In
this book the (+,−,−,−) signature is adopted, and the Greek suffixes α, β, γ,
· · · take values of 0, 1, 2, and 3, while the Latin suffixes i, j, k, · · · take values
of 1, 2, and 3. The semicolon denotes not covariant differentiation but partial
differentiation, since we do not consider the space-time curvature here.

(a) Metric

The square of the invariant line element, ds2, is written as

ds2 = c2dτ2 = gµνdxµdxν , (11.1)

where c is the speed of light, τ the proper time, xµ the space-time coordi-
nates (x0 = ct in this appendix), and gµν the space-time metric. The three-
dimensional part of the metric, γij , is defined by γij = −gij .

In the case of cylindrical coordinates (r, ϕ, z), the line element (3.1) becomes,
in a flat space-time,

ds2 = c2dt2 − dr2 − r2dϕ2 − dz2. (11.2)

(b) Four-velocity of matter

The four-velocity uµ of matter is defined by

uµ ≡ dxµ

ds
=

(
γ, γ

vi

c

)
= γ

(
1,

v

c

)
, (11.3)

where

γ =
(

1 − v2

c2

)−1/2

, (11.4)

v2 = viv
i = γikvivk = −gikvivk. (11.5)

The covariant components become

uµ = gµνuν =
(
γ,−γ

vi

c

)
. (11.6)

It should be noted that uµuµ = gµνuµuν = 1.

(c) Four-momentum of photon

The four-momentum kµ of a photon is defined by

kµ =
(
ν, νlk

)
= ν (1, l) , (11.7)

where ν is the photon frequency and l is the direction cosine vector of a photon.
The covariant components become

kµ = ν (1,−l) . (11.8)
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Since l2 = 1, the contraction of the four-momentum is null:

kµkµ = ν2
(
1 − l2

)
= 0. (11.9)

(d) Doppler and aberration effects

The four-velocity uµ and the four-momentum kµ expressed in comoving
frames are, respectively,

uµ = (1, 0) , (11.10)

kµ = ν0 (1, l0) , (11.11)

where the subscript 0 means the values measured in the comoving (fluid) frame.
Using equations (3.6) and (3.7), we have

uµkµ = γν − γν
v · l
c

= ν0. (11.12)

Thus, the transformation of the photon frequency between the inertial and
comoving frames (relativistic Doppler effect) becomes

ν0 = νγ

(
1 − v · l

c

)
, (11.13)

ν = ν0γ

(
1 +

v · l0
c

)
. (11.14)

Similarly, the transformation of the direction cosine (relativistic aberration
effect) becomes

l0 =
ν

ν0

[
l +

(
γ − 1
v2/c2

v · l
c

− γ

)
v

c

]
, (11.15)

l =
ν0

ν

[
l0 +

(
γ − 1
v2/c2

v · l0
c

+ γ

)
v

c

]
. (11.16)

The transformation of the solid angle is

dΩ0 =
ν

ν0

dν

dν0
dΩ =

[
γ

(
1 − v · l

c

)]−2

dΩ, (11.17)

dΩ =
[
γ

(
1 +

v · l0
c

)]−2

dΩ0. (11.18)

(e) Quantities of radiation fields

The specific intensity Iν is related to the photon occupation number nν by
Iν = (2hν3/c2)nν . The relativistic invariant is not Iν , but Iν/ν3:

Iν

ν3
=

Iν0

ν3
0

≡ f. (11.19)

Using these quantities, the energy-momentum tensor of the radiation field is
defined as

Rµν ≡ 2h

c3

∫
nν lµlνν3dνdΩ =

1
c

∫
Iν lµlνdνdΩ, (11.20)

where lµ = (1, lk). Hence, the components of Rµν become

R00 =
1
c

∫
IνdνdΩ ≡ E, (11.21)

R0i =
1
c

∫
Iν lidνdΩ ≡ 1

c
F i, (11.22)

Rij =
1
c

∫
Iν liljdνdΩ ≡ P ij , (11.23)

where E is the radiation energy density, F i the radiative flux, and P ij the
radiation stress tensor.

Integrating over the frequency, we obtain the following frequency-integrated
quantities:

I ≡
∫

Iνdν, E ≡
∫

Eνdν, F i ≡
∫

F i
νdν, P ij ≡

∫
P ij

ν dν. (11.24)

(f) Transformation rules

The transformation of the frequency-integrated intensity I between the in-
ertial and comoving frames is

I0 =
(ν0

ν

)4

I =
[
γ

(
1 − v · l

c

)]4

I. (11.25)

Integrating equation (3.25) over a solid angle, we obtain the transformation
rule of E:

E0 = γ2

(
E − 2

v · F
c2

+
vivk

c2
P ik

)
. (11.26)
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Multiplying equation (3.25) by li0 and integrating the resultant equation over
a solid angle, we have the transformation rule of F i:

F i
0 = γ

{
F i+

[(
γ +

γ − 1
v2/c2

)
v · F
c2

− γE − γ − 1
v2/c2

vjvk

c2
P jk

]
vi−vkP ik

}
.

(11.27)
Multiplying equation (3.25) by li0l

j
0 and integrating the resultant equation

over a solid angle, we have the transformation rule of P ij :

P ij
0 = P ij +

γ − 1
v2/c2

(
vivk

c2
P jk +

vjvk

c2
P ik

)
+

(
γ − 1
v2/c2

)2
vivj

c2

vkvmP km

c2
+ γ2 vivj

c2
E

−γ

(
viF j

c2
+

vjF i

c2

)
− 2γ

γ − 1
v2/c2

vivj

c2

v · F
c2

. (11.28)

(g) Energy-momentum tensor

The energy-momentum tensor for an ideal gas, Tµν , is

Tµν = (ε + p) uµuν − pgµν , (11.29)

where ε is the internal energy per unit proper volume and p is the pressure
measured in the comoving frame (ε+p is the enthalpy per unit proper volume).

The energy-momentum tensor for radiation, Rµν , is

Rµν =

(
E 1

cF i

1
cF i P ij

)
, (11.30)

where E is the radiation energy density, F i the radiative flux, and P ij the
radiation stress tensor.

The momentum and energy conservations are expressed, respectively, as(
T ν

µ + R ν
µ

)
;ν

= 0, (11.31)

uµ
(
T ν

µ + R ν
µ

)
;ν

= 0, (11.32)

where the semicolon means the partial differentiation in the present case.

11.2 Equations of Radiative Transfer

We first derive the basic equations describing the behavior of radiation in-
teracting with matter within the framework of special relativity.

11.2.1 Transfer Equation

As in the case of a non-relativistic regime (appendix D), a change in the
specific intensity is expressed by the transfer equation, although it should be
written down in a Lorentz-invariant form.

By means of the Lorentz invariant f (= Iν/ν3 = Iν0/ν3
0), we can write the

transfer equation of the form (Hsieh and Spiegel 1976):

kµ ∂f

∂xµ
= ρ (α − βf) − ρκsca

ν0

∫
φν(l′, l)f(l)ν′dν′dΩ′

+ρκsca
ν0

∫
φν(l, l′)f(l′)ν′dν′dΩ′, (11.33)

where ρ is the proper mass density, α the invariant form of the emission co-
efficient, β the invariant form of the absorption coefficient, κsca

ν0 the scattering
opacity in the comoving frame, and φν the scattering redistribution function.
It is noted that νdνdΩ (= ν′dν′dΩ′) is also a relativistic invariant.

Of these, α and β are related, respectively, to the mass emissivity jν0 and
the mass absorption coefficient κabs

ν0 in the comoving frame by

jν0 = 4πν2
0α and κabs

ν0 =
β

ν0
. (11.34)

For Thomson scattering, the scattering redistribution function in the comoving
frame is

φν =
3
4

[
1 +

(
l0 · l′0

)2
]
δ(ν0 − ν′

0)
1
4π

. (11.35)

It should be noted that
∫

φνν0dν0dΩ0 = ν′
0 and

∫
φνν′

0dν′
0dΩ′

0 = ν0.
Substituting these quantities into equation (3.33), the transfer equation is

rewritten as

ν

[
∂f

c∂t
+ (l · ∇) f

]
= ρ

jν0

4πν2
0

− ρν0κ
abs
ν0 f − ρν0κ

sca
ν0 f



4

+
3
4
ρκsca

ν0 ν0

∫ [
1 +

(
l0 · l′0

)2
]
f(l′)

dΩ′
0

4π
. (11.36)

Furthermore, replacing f by Iν (or Iν0), we finally obtain the (angle-dependent)
radiative transfer equation in the mixed frame:

1
c

∂Iν

∂t
+ (l · ∇) Iν =

(
ν

ν0

)2

ρ

×
[
jν0

4π
−

(
κabs

ν0 + κsca
ν0

)
Iν0 +

3
4
κsca

ν0

c

4π

(
Eν0 + l0il0jP

ij
ν0

)]
, (11.37)

where we use the definitions of E and P ij . This transfer equation (3.37) seems
to be similar to the non-relativistic one (D.7), except for the ν/ν0-term. It
should be noted, however, that the left-hand side is written by the quanti-
ties evaluated in the inertial (fixed) frame, while the right-hand side by the
quantities in the comoving (fluid) frame.

11.2.2 Moment Equations

Next, we derive the (frequency-integrated) moment equations. After a long
time since Eddington, who first introduced a moment expansion to radiation
transfer in the early 20th century, moment equations for relativistic radia-
tion transfer have been derived by several studies for a special relativistic case
(Thomas 1930; Hazlehurst and Sargent 1959; Castor 1972; Mihalas and Miha-
las 1984) and in a curved space-time (Lindquist 1966; Anderson and Spiegel
1972; Thorne 1981; Udey and Israel 1982; Nobili et al. 1993; Park 2003, 2006;
Takahashi 2007). A complete set of moment equations for a relativistic flow is
given by the projected symmetric trace-free (PSTF) formalism (Thorne 1981).

Integrating the transfer equation (3.37) over the frequency, with the help of
the Lorentz transformation (3.14) [dν = (dν/dν0)dν0 = γ(1 + v · l0/c)dν0], we
obtain a frequency-integrated angle-dependent transfer equation:

1
c

∂I

∂t
+ (l · ∇) I = ργ3

(
1 +

v · l0
c

)3

×
[

j0
4π

−
(
κabs

0 + κsca
0

)
I0 +

3
4
κsca

0

c

4π

(
E0 + l0il0jP

ij
0

)]
, (11.38)

where
I ≡

∫
Iνdν, I0 ≡

∫
Iν0dν0, (11.39)

E0 ≡
∫

Eν0dν0, P ij
0 ≡

∫
P ij

ν0dν0, (11.40)

j0 ≡
∫

jν0dν0, κabs
0 + κsca

0 ≡ 1
I0

∫ (
κabs

ν0 + κsca
ν0

)
Iν0dν0. (11.41)

Integrating the transfer equation (3.38) over a solid angle, with the help of
a transformation of the solid angle (3.18), we obtain the zeroth-moment of
equation (3.38):

∂E

∂t
+

∂F k

∂xk
= ργ

(
j0 − cκabs

0 E0

)
− ργ

(
κabs

0 + κsca
0

) v · F 0

c
. (11.42)

Integrating the transfer equation (3.38) over a solid angle, after being multi-
plied by the direction cosine, with the help of transformations (3.18) and (3.16),
we obtain the first-moment of equation (3.38):

1
c2

∂F i

∂t
+

∂P ik

∂xk
= ργ

vi

c2

(
j0 − cκabs

0 E0

)
−ρ

(
κabs

0 + κsca
0

) γ − 1
v2

vi

c
(v · F 0)

−1
c
ρ

(
κabs

0 + κsca
0

)
F i

0. (11.43)

In general, such a moment expansion gives an infinite set of equations. In
order to make the transfer problem tractable, one must truncate the expansion
at the finite order by adopting a suitable closure assumption. For example, we
here truncate the equations at the second order, and we introduce some addi-
tional closure relation among E, F i, and P ik, as given in the next subsection.

As already noted, the left-hand sides of these moment equations (3.42) and
(3.43) are described by the quantities in the inertial (fixed) frame, while the
right-hand sides by those in the comoving (fluid) frame. Thus, using the trans-
formation rules (3.26)–(3.28), let us rewrite the right-hands side of these mo-
ment equations. After several manipulations, we finally obtain the moment
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equations expressed by the quantities in the inertial (fixed) frame:

1
c

∂I

∂t
+ (l · ∇) I = ργ−3

(
1 − v · l

c

)−3

×

[
j0
4π

−
(
κabs

0 + κsca
0

)
γ4

(
1 − v · l

c

)4

I +
κsca

0

4π

3
4
γ−2

(
1 − v · l

c

)−2

×

{
γ4

[(
1 − v · l

c

)2

+
(

v2

c2
− v · l

c

)2
]

cE + 2γ2

(
v2

c2
− v · l

c

)
F · l

−2γ4

[(
1 − v · l

c

)2

+
(

1 − v · l
c

) (
v2

c2
− v · l

c

)]
v · F

c

+liljcP
ij − 2γ2

(
1 − v · l

c

)
viljP

ij + 2γ4

(
1 − v · l

c

)2
vivjP

ij

c

}]
,

(11.44)

∂E

∂t
+

∂F k

∂xk
= ργ

(
j0 − cκabs

0 E + κabs
0

v · F
c

)
+ργ3κsca

0

[
v2

c
E +

vivj

c
P ij −

(
1 +

v2

c2

)
v · F

c

]
, (11.45)

1
c2

∂F i

∂t
+

∂P ik

∂xk
=

ργ

c

(
vi

c
j0 − κabs

0 F i + κabs
0 vkP ik

)
−ργ

c
κsca

0

[
F i − γ2Evi − vkP ik + γ2vi

(
2v · F

c2
− vjvk

c2
P jk

)]
.

(11.46)

11.2.3 Closure Relation

As a closure relation, we usually adopt the Eddington approximation in the
comoving frame:

P ij
0 =

δij

3
E0. (11.47)

It should be noted that we here do not consider the radiative viscosity. In a
relativistic regime, this closure relation should be modified, as discussed in the
next subsection.

Substituting the transformation rules (3.26)–(3.28) into this relation (3.47),
we obtain the closure relation in the inertial frame:

P ij − δij

3
γ2 vkvm

c2
P km +

γ2

γ + 1

(
vivk

c2
P jk +

vjvk

c2
P ik

)
+

(
γ2

γ + 1

)2
vivj

c2

vkvm

c2
P km =

δij

3
γ2

(
E − 2

v · F
c2

)
− γ2 vivj

c2
E

+γ

(
viF j

c2
+

vjF i

c2

)
+ 2γ

γ2

γ + 1
vivj

c2

v · F
c2

.

(11.48)

To the first order in v/c, the closure relation becomes (Hsieh and Spiegel
1976)

P ij =
δij

3
E +

viF j

c2
+

vjF i

c2
− 2

3
δij v · F

c2
. (11.49)

11.3 Relativistic Regimes

The radiation moment formalism is quite convenient and essential, especially
in a relativistic regime, and it is a powerful tool for tackling problems of rel-
ativistic radiation hydrodynamics (e.g., Thorne et al. 1981; Flammang 1982,
1984; Nobili et al. 1991, 1993; Park 2001, 2006 for spherically symmetric prob-
lems; Takahashi 2007 for the Kerr metric). However, its validity is never known
unless a fully angle-dependent radiation transfer equation is solved. Thus, the
relativistic moment equations with a closure relation must be carefully treated,
and applied to black-hole accretion flows, relativistic jets and winds, and rela-
tivistic explosions, such as gamma-ray bursts.

Actually, the pathological behavior in relativistic radiation moment equa-
tions has been pointed out and examined (Turolla and Nobili 1988; Nobili et
al. 1991; Turolla et al. 1995; Dullemond 1999). Namely, the moment equa-
tions for radiation transfer in relativistically moving media can generally have
singular (critical) points. As a result, solutions behave pathologically in a rela-
tivistic regime. The appearance of singularities is supposed to be related to the
approximation of the full transfer equations with a finite number of moments
(Dullemond 1999).



6

For example, in one-dimensional relativistic flows using the closure relation
(3.47), where the moment equations are truncated at the second order, the sin-
gularity appears when the flow velocity v becomes ±c/

√
3, which corresponds

to the relativistic sound speed (Turolla and Nobili 1988; Turolla et al. 1995).
Hence, we cannot obtain solutions accelerated beyond c/

√
3, altough there ex-

ists a decelerating solution (Fukue 2005).
The invalidity of the Eddington approximation in such a relativistic flow can

be understood as follows. In adopting the Eddington approximation (3.47), we
assume that within the photon mean-free path the radiation field is isotropic
in the comoving frame. However, in the relativistic regime, where the veloc-
ity gradient becomes large and there exist the Doppler and aberration effects
of photons, the isotropy of the radiation field may break down even in the
comoving frame.

For example, the photon mean-free path ` in the comoving frame is ` ∼
1/(κρ), where κ is the opacity measured in the comoving frame and ρ is the
proper density. When there exists a (strong) velocity gradient, say dv/ds, the
velocity increase at the distance of ` is estimated as

∆v = `
dv

ds
=

dv

κρds
=

dv

dτ
, (11.50)

where τ (= κρs) is the optical depth. In order for the radiation fields to be
isotropic in the comoving frame, this velocity increase should be sufficiently
smaller than the speed of light. In such a case, we should modify the closure
relation in the case of subrelativistic to relativistic regimes, as in the case of
optically thick to thin regimes.

11.3.1 Velocity-Dependent Variable Eddington Factor

In order to improve the situation we are confronted with, instead of the
usual Eddington approximation, we can adopt a variable Eddington factor,
which depends on the flow velocity β (= v/c) and the velocity gradient dβ/dτ

as well as the optical depth τ (Fukue 2006; Akizuki and Fukue 2007; Fukue

2007b; Koizumi and Umemura 2007). In one-dimensional flows the variable
Eddington factor f(τ, β) is generally defined as

P0 = f(τ, β)E0, (11.51)

where E0 and P0 are the radiation energy density and the radiation stress
tensor in the comoving frame, respectively. The closure relation in the inertial
frame for one-dimensional flows then becomes

cP (1 − fβ2) = cE(f − β2) + 2Fβ(1 − f), (11.52)

where E, F , and P are the radiation energy density, the radiative flux, and the
radiation pressure in the inertial frame, respectively.

The function f(τ, β) must reduce to 1/3 or appropriate values in the non-
relativistic limit of β = 0, whereas it would approach unity in the extremely
relativistic limit of β = 1. Furthermore, in the sufficiently optically thick
regime this function approaches 1/3 except for β = 1, while in the optically
thin limit it reduces to an appropriate form determined by the geometry under
the considerations.1 The appropriate form is now under construction.

11.4 Matter Coupling

We can now write the basic equations for matter (Hsieh and Spiegel 1976;
Fukue et al. 1985; Park 2006 for the Schwarzschild metric; Takahashi 2007 for
the Kerr metric).

(a) Mass conservation

The particle number conservation is

(nuµ);µ =
1√
−g

∂

∂xµ

(√
−gnuµ

)
= 0, (11.53)

1In the plane-parallel case, for instance, the variable Eddinton factor in the optically thin
limit is analytically derived as

f =
1 − 3β + 3β2

3 − 3β + β2
.



7

where xµ is the space-time coordinates, uµ the four-velocity, and n the proper
number density.

In the three-dimensional form, the mass conservation becomes

∂

∂t
(ργ) + div(ργv) = 0, (11.54)

where ρ (= nmc2) is the proper density.

(b) Momentum conservation

The relativistic equations of motion, (T µ
i + R µ

i );µ = 0, are written as

(ε + p)
(

uµ ∂ui

∂xµ
+ Γi

µνuµuν

)
−

(
giµ − uiuµ

) ∂p

∂xµ
= −(giµ − uiuµ)R ν

µ ;ν ,

(11.55)
where ε is the internal energy per unit proper volume, p the pressure measured
in the comoving frame, Tµν the energy-momentum tensor of matter, and Rµν

the stress-energy tensor of radiation.
The right-hand side of equation (3.55) are, from (3.30), (3.42), (3.43), (3.45)

and (3.46),

−
(
giµ − uiuµ

)
R ν

µ ;ν

= −
(

1
c2

∂F i

∂t
+

∂P ik

∂xk

)
−γ2

c2
vi

[
−

(
∂E

∂t
+

∂F k

∂xk

)
+ vj

(
1
c2

∂F j

∂t
+

∂P jk

∂xk

)]
=

ρ

c

(
κabs

0 + κsca
0

) [
F i

0 +
γ − 1
v2

vi(v · F 0)
]

=
ργ

c

(
κabs

0 + κsca
0

)
×

[
F i − γ2Evi − vkP ik + γ2vi

(
2v · F

c2
− vjvk

c2
P jk

)]
.

(11.56)

Thus, the relativistic equations of motion are

c2

(
uµ ∂ui

∂xµ
+ Γi

µνuµuν

)

=
c2

ε + p

(
giµ − uiuµ

) ∂p

∂xµ
+

ρc2

ε + p

1
c

(
κabs

0 + κsca
0

)
×

[
F i

0 +
γ − 1
v2

vi(v · F 0)
]

=
c2

ε + p

(
giµ − uiuµ

) ∂p

∂xµ
+

ρc2

ε + p

γ

c

(
κabs

0 + κsca
0

)
×

[
F i − γ2Evi − vkP ik + γ2vi

(
2v · F

c2
− vjvk

c2
P jk

)]
.

(11.57)

(c) Energy conservation

The energy conservation, uµ(T ν
µ + R ν

µ );ν = 0, is written as

1√
−g

∂

∂xµ

(√
−gεuµ

)
+

p√
−g

∂

∂xµ

(√
−guµ

)
= −uµR ν

µ ;ν . (11.58)

The right-hand side of equation (3.58) is, from (3.30), (3.42), (3.43), (3.45)
and (3.46),

−uµR ν
µ ;ν = −γ

c

(
∂E

∂t
+

∂F k

∂xk

)
+

γvi

c

(
1
c2

∂F i

∂t
+

∂P ik

∂xk

)
= −ρ

c

(
j0 − cκabs

0 E0

)
=

γ2ρ

c

(
− j0

γ2
+ cκabs

0 E − κabs
0

2v · F
c

+ κabs
0

vivk

c
P ik

)
. (11.59)

Thus, the energy equation is

c√
−g

∂

∂xµ

[√
−g

(
ε − ρc2

)
uµ

]
+ c

p√
−g

∂

∂xµ

(√
−guµ

)
= −ρ

(
j0 − cκabs

0 E0

)
= γ2ρ

(
− j0

γ2
+ cκabs

0 E − κabs
0

2v · F
c

+ κabs
0

vivk

c
P ik

)
. (11.60)

(d) Sub-relativistic Regime
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To the first order of (v/c), the equations of motion and energy equation for
matter are written as, respectively,

∂v

∂t
+ (v · ∇)v = −∇ψ − 1

ρ
∇p

+
κabs

0 + κsca
0

c

(
F − Ev − vkP ik

)
, (11.61)(

∂

∂t
+ v · ∇

)
e +

p

ρ
∇v =

1
ρ
q+ − j0 + cκabs

0 E − κabs
0

2v · F
c

, (11.62)

where v is the velocity, ψ the gravitational potential, p the pressure, e the
internal energy per unit mass, and q+ the (viscous) heating rate per unit volume
(Hsieh and Spiegel 1976; Fukue et al. 1985).

The equations for radiation are, on the other hand,

∂E

∂t
+ ∇F = ρ

[
j0 − cκabs

0 E +
(
κabs

0 − κsca
0

) v · F
c

]
, (11.63)

1
c2

∂F i

∂t
+

∂P ik

∂xk
=

ρ

c

(
vi

c
j0 − κabs

0 F i + κabs
0 vkP ik

)
−ρ

c
κsca

0

(
F i − Evi − vkP ik

)
, (11.64)

P ij =
δij

3
E +

viF j

c2
+

vjF i

c2
− 2

3
v · F
c2

δij . (11.65)

11.5 Plane-Parallel Expression

For a relativistically moving atmosphere in the plane-parallel geometry (z),
the hydrodynamic equations and transfer equations become as follows (Fukue
2006, 2007a, b).

For matter, the continuity equation is

ρcu = ργβc = J (= const.), (11.66)

where ρ is the proper gas density, u the vertical four velocity, J the mass-loss
rate per unit area, and c the speed of light. The four velocity u is related to

the proper three velocity v by u = γβ = γv/c, where γ is the Lorentz factor,
γ =

√
1 + u2 = 1/

√
1 − (v/c)2.

The equation of motion is

c2u
du

dz
= c2γ4β

dβ

dz

= −dψ

dz
− γ2 c2

ε + p

dp

dz

+
ρc2

ε + p

κabs
0 + κsca

0

c
γ3

[
F (1 + β2) − (cE + cP )β

]
, (11.67)

where ψ is the gravitational potential, p the gas pressure, κabs
0 and κsca

0 are the
absorption and scattering opacities (gray), defined in the comoving frame, E

the radiation energy density, F the radiative flux, and P the radiation pressure
observed in the inertial frame. The first term in the square brackets on the
right-hand side of equation (3.67) means the radiatively-driven force, which is
modified to the order of u2, whereas the second term is the radiation drag force,
which is also modified, but roughly proportional to the velocity.

When the gas pressure is ignored, the advection terms of the energy equation
are dropped, and heating is balanced with the radiative terms,

0 =
q+

ρ
−

(
j0 − κabs

0 cEγ2 − κabs
0 cPu2 + 2κabs

0 Fγu
)

, (11.68)

where q+ is the internal heating and j0 is the emissivity defined in the comoving
frame. In this equation (3.68), the third and fourth terms on the right-hand
side appear in the relativistic regime. Under the α prescription, the viscous-
heating rate is proportional to the pressure, and therefore, may depend on
z.

For radiation, the frequency-integrated transfer equation (3.44), the zeroth
moment equation (3.45), and the first moment equation (3.46) become, respec-
tively:

µ
dI

dz
= ρ

1
γ3(1 − βµ)3

[
j0
4π

−
(
κabs

0 + κsca
0

)
γ4 (1 − βµ)4 I

+
κsca

0

4π

3
4
γ2

{[
1 +

(µ − β)2

(1 − βµ)2
β2 +

(1 − β2)2

(1 − βµ)2
1 − µ2

2

]
cE
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−
[
1 +

(µ − β)2

(1 − βµ)2

]
2Fβ

+
[
β2 +

(µ − β)2

(1 − βµ)2
− (1 − β2)2

(1 − βµ)2
1 − µ2

2

]
cP

}]
, (11.69)

dF

dz
= ργ

[
j0 − κabs

0 cE + κsca
0 (cE + cP )γ2β2

+κabs
0 Fβ − κsca

0 F (1 + β2)γ2β
]
. (11.70)

dP

dz
=

ργ

c

[
j0β − κabs

0 F + κabs
0 cPβ

−κsca
0 Fγ2(1 + β2) + κsca

0 (cE + cP )γ2β
]
, (11.71)

where µ = cos θ.
Finally, a closure relation is

cP (1 − fβ2) = cE(f − β2) + 2Fβ(1 − f), (11.72)

where f(τ, β) is the variable Eddington factor depending on the velocity as well
as the optical depth.
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