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23.1 Relativistic Radiative Transfer Equation

The radiative transfer equations are given in several literatures (Chandrasekhar
1960; Mihalas 1970; Rybicki, Lightman 1979; Mihalas, Mihalas 1984; Shu 1991;
Kato et al. 1998, 2008; Mihalas, Auer 2001; Peraiah 2002; Castor 2004). The
basic equations for relativistic radiation hydrodynamics are given in, e.g., the
appendix E of Kato et al. (2008) in general and vertical forms (See also Fukue
2008c).

23.1.1 General Form

In a general form the radiative transfer equation in the mized frame, where

the variables in the inertial and comoving frames are used, is expressed as
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where c¢ is the speed of light. In the left-hand side the frequency-integrated
specific intensity I and the direction cosine I are quantities measured in the in-
ertial (fixed) frame. In the right-hand side, on the other hand, the mass density
p, the frequency-integrated mass emissivity jg, the frequency-integrated mass
absorption coefficient kg, the frequency-integrated mass scattering coefficient
00, the frequency-integrated specific intensity Iy, and the frequency-integrated
radiation energy density Ej are quantities measured in the comoving (fluid)
frame. In this paper, instead of the weakly anisotropic Thomson scattering, we
assume that the scattering is isotropic for simplicity.

The Doppler effect, the aberration, and the transformation of the intensities

are expressed as
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where v and vy are the frequencies measured in the inertial and comoving
frames, respectively, the direction cosine Iy measured in the comoving frame, 3
(= v/c) the normalized velocity, v being the flow velocity, and v (= 1//1 — 52)
the Lorentz factor, 3 being v/c.

The zeroth and first moment equations are, respectively,
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where the frequency-integrated radiation energy density F, the frequency-
integrated radiative flux F, and the frequency-integrated radiation stress P
are measured in the inertial frame, while those with the subscript 0 are mea-

sured in the comoving frame.



As a closure relation, we adopt the Eddington approximation in the comoving
frame:

Py* = f*Eo, (23.7)

where f** is the Eddington tensor, which is generally a function of the optical

depth and flow speed in the relativistic radiative flow.

23.1.2 Plane-Parallel Expression in the Comoving Frame

Let us suppose a relativistic flow in the vertical direction. In the plane-
parallel geometry with the vertical axis z the transfer equation (23.1) is ex-
pressed as
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where p is the direction cosine in the inertial frame. Inserting the transforma-
tion (23.4) in the left-hand side, this equation (23.8) becomes
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To calculate the derivatives of Iy (Mihalas, Mihalas 1984), we apply the chain

rules and after some manipulations we have
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where g is the direction cosine in the comoving frame. In addition, the Doppler
shift (23.2) and the aberration (23.3) are respectively expressed as
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Using these expressions, after some manipulations we have the radiative

transfer equation in the comoving frame for the plane-parallel flow:
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Integrating the transfer equation (23.14) over a solid angle, we have the
zeroth and first moment equations in the comoving frame for the plane-parallel

flow:
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where Ey, Fy, and Py are the radiation energy density, the radiative flux, and

the radiation pressure in the comoving frame, respectively.
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O 23.1: Eddington factor f and the factor I' as a function of the flow speed S.

In the present vertically one-dimensional flow, the closure relation (23.7)
becomes
Py = f(7, 8)Eq, (23.17)

where f(7, /) is the Eddington factor, and generally a function of the optical
depth, the flow speed, and the velocity gradient (Fukue 2008b, d). In Fukue
(2008c¢) the Eddington factor is set to be 1/3, while in this paper we adopt the

following form:
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which is 1/3 for § = 0 and approaches unity as 8 — 1 (Fukue 2009). The

behavior of this Eddington factor is shown in figure 1.

(23.18)

23.1.3 Steady Plane-Parallel Flow

Let us further suppose a time-independent steady flow in the vertical direc-
tion. In this case the transfer equation and moment equations in the comoving

frame become
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Introducing the optical depth defined by
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and the scattering albedo,
go
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the transfer equation (23.19) and the moment equations (23.20) and (23.21)
are finally expressed as
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When the flow speed is spatially constant, as we assume in what follows,

these equations become
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In this paper, we consider this uniform flow case, and examine the relativistic
moment equations (23.28) and (23.29) under the Eddington approximation
with a variable Eddington factor for several situations.

In equation (23.27), the term (po + ) on the left-hand side comes from the
aberration effect (23.13). We emphasize that this aberration term plays the

very important role in the relativistic radiative flow (cf. Fukue 2010b).

23.2 Radiative Equilibrium

We first consider the case of the radiative equilibrium (RE); RE without
heating and cooling (Fukue 2008c), RE with heating, and RE with advective
cooling. As already stated, the flow speed 3 is assumed to be constant for
simplicity. We further assume that the Eddington factor depends only on
the flow speed, and therefore, is constant. Under these situations, we seek

analytical solutions of the relativistic moment equations (23.28) and (23.29).

23.2.1 Radiative Equilibrium without Heating and Cool-
ing
If the radiative equilibrium holds in the whole flow, and there is no heating

or cooling sources in the flow, then jo = kgcEp, and the relativistic moment
equations (23.28) and (23.29) become
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With the help of the closure relation (23.17), we can eliminate Fy and Py to
yield
=Y - _TF, (23.32)

where
(23.33)

is a function of the flow speed, and shown in figure 1. This equation (23.32) is
easily integrated to give the solution for the radiative flux Fj in the comoving
frame:

Fo=Fe ', (23.34)

where Fj is the radiative flux at 7 = 0. Similarly, the radiation energy density
FEy and the radiation pressure P, in the comoving frame are also analytically
obtained as

¢Py = fcEy = cPs + F% (1—eT7), (23.35)

where P, is also the value at 7 = 0.

Here, we impose the boundary condition at 7 = 0:
cP,=2fF, at 7=0. (23.36)
At last, the analytical solutions become

Fy = Fe ', (23.37)
cPy = fcEy= Fsé (14+28-e17). (23.38)

These analytical solutions are just those found in Fukue (2008c), where the
radiative transfer equations in the inertial frame were solved to give the ana-
lytical solutions in the inertial frame, and the solutions in the comoving were
transformed from them.

For the convenience of readers, the analytical solutions, which are essentially
same as those in Fukue (2008c¢), are shown in figure 2 as a function of the optical
depth for several values of the flow speed. The values of § are 0 to 0.9 in steps
of 0.1. In figure 2, the solid curves represent the present solutions, whereas the
dashed ones mean those in Fukue (2008c), where f is fixed as f = 1/3.

As already stated in Fukue (2008c), except for the case of 8 = 0, the radiative
flux in the comoving frame exponentially decreases with the optical depth,
while both the radiation energy density and the radiation pressure approach
the constant value at the large optical depth. In the non-relativistic limit of
8 — 0, the solutions reduce to the usual Milne-Eddington ones; Fy = Fy and
cPy = Fs(2f + 7).



0 23.2: Comoving solutions for relativistic plane-parallel flows in the RE case
without heating and cooling: (a) Normalized radiation energy density, (b) nor-
malized radiative flux, and (c) normalized radiation pressure. The values of
are 0 to 0.9 in steps of 0.1. The solid curves represent the present solutions,
whereas the dashed ones mean those in Fukue (2008¢c). In the non-relativistic
limit of B — 0, the solutions reduce to the usual Milne-Eddington ones; Fjy = Fj
and cPy = Fy(2f + 7).
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Analytical solutions for the specific intensity are also obtained, although we
skip it since we concentrate the analytical solutions of the radiative moments

in this paper.

23.2.2 Radiative Equilibrium with Internal Heating

If there is the internal heating, but the gas pressure is ignored, then the
radiative equilibrium condition is modified as

g
Jo = o + KocEo, (23.39)

where ¢ is the heating rate per unit volume, and the relativistic moment
equations (23.28) and (23.29) become
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For simplicity, we assume the mass heating rate ¢* is constant. Then, with

the help of the closure relation (23.17), we can eliminate Ey and Py to yield

ko _ TF,— éfq*. (23.42)

dr
This equation (23.42) is also integrated to give the solution for the radiative

flux Fj in the comoving frame:

Fy=Fe 17— g2, (23.43)

DRI

where Fj is now an integration constant.
This solution (23.43) becomes zero at some optical depth. Hence, we impose

the boundary condition at the flow base 7,:
Fo=0 at 7= (23.44)
Under this boundary condition, the solution (23.43) is rewritten as

Fy = q*é [eF(Tb_T) _ 1} . (23.45)
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Inserting this solution (23.45) into equation (23.41), the radiation pressure Py

in the comoving frame is also analytically integrated to give
_ _ * f2 I'(mp—1) * f
cPy = fcEy =cPy +¢q 7 l1—e +4q ’y—ﬁ(Tb —7), (23.46)

where P; is also an integration constant.

Here, we impose the boundary condition at 7 = 0:

cPs = 2fF, (23.47)
where
_ * f I'm,
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Hence, the integration constant cP; is expressed as
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At last, the analytical solutions (23.45) and (23.46) are expressed as
P =) _ 1
- = — 23.51
Fs el'm — 1 7’ ( )
CPO - fCEO
F, F
(1+28)e™ — 26 — el — %T
= = . (23.52)
B el —1

These analytical solutions are shown in figure 3 as a function of the optical
depth for several values of the flow speed. The values of 3 are 0 to 0.9 in steps
of 0.1. As is seen in figure 3, the overall behavior of solutions in the RE case
with heating is similar to that in the RE case without heating. However, in
this case the radiative flux Fj in the comoving frame becomes zero at a finite

optical depth 7,, which is set to be 10 in the present case.
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0 23.3: Comoving solutions for relativistic plane-parallel flows in the RE case
with heating: (a) Normalized radiation energy density, (b) normalized radiative
flux, and (c¢) normalized radiation pressure. The values of 3 are 0 to 0.9 in steps
of 0.1. The optical depth 71, at the flow base is set to be 10.



In the non-relativistic limit of 3 — 0, these analytical solutions (23.51) and
(23.52) reduce to

Fy = F, (1—T>, (23.53)
as
2 72
cPh = Filz+7——|. (23.54)
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These analytical solutions are just those found in Fukue and Akizuki (2006),
where the non-relativistic radiative transfer equations of the plane-parallel disk

with a finite optical depth were analytically solved for several situations.

23.3 Local Thermodynamic Equilibrium

Next, we consider the case of the local thermodynamic equilibrium (LTE);

LTE with constant temperature and LTE with temperature gradient. If the
local thermodynamic equilibrium (LTE) holds in the comoving frame,
i ko By, (23.55)
where By (= 0T /7) is the frequency-integrated blackbody intensity in the
comoving frame, Ty being the blackbody temperature, and generally a function
of the height z or the optical depth 7.

In this case, the relativistic moment equations (23.28) and (23.29) become
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These equations reduce to those of RE when a = 1, as in the non-relativistic
case.

With the help of the closure relation (23.17), we can eliminate Ey, and we

have
dFy  ~BdcP, cP,
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Furthermore, after some manipulations we have
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23.3.1 Uniform Blackbody Case

We first assume that the blackbody intensity is uniform in the whole flow.

Then equation (23.72) becomes a homegeneous linear differential one:

42F,
dr?
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The general solution of this equation (23.73) is

TFy=0. (23.61)

Fo = C1(B)eMT + Cy(B)eT. (23.62)

Inserting this solution (23.74) into equation (23.71), we can obtain the general

solution for Py,
Cj 0 = 03( 3)
1 A 1 A
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Here, the coefficients C;’s are functions of 3 in the present relativistic case. In

addition, the indeces \;’s are expressed as

Ao = ! [(2 —a)l £ \/(2 —a)’T? + MF] , (23.64)
’ 2 alt;
and shown in figure 5 as a function of 3 for several values of a. The values of
a are 0 to 1 in steps of 0.1. The index A\; reduces to —I" when a = 1.
As is well-known, the solutions of the inhomogenious equation are the combi-
nation of the general solutions of the homogenious part and the special solution

of the inhomogenious part. When By is constant, after some manipulations, the
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O 23.4: Indeces A1 and A\ as a function of  for several values of a.

general solutions for equations (23.70) and (23.71) with the uniform blackbody

case become as

Fy = CeM + Che, (23.65)
CPO = 4f7TBO
1 A 1 A
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where the coefficients C7 and Cy are now some constants and to be determined
by the boundary conditions.
We now impose the boundary conditions at the flow top of 7 = 0 and the

flow base of 7 = 7,. At the flow top we set

Fo=F, at 7=0, (23.67)
while at the flow base we set

Fo=0 at 7=, (23.68)

In this case, the coefficients become
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Hence, we finally obtain the solutions for equations (23.70) and (23.71) in the

uniform blackbody case as
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Examples of these analytical solutions (23.83) and (23.84) are shown in figure
6 as a function of the optical depth for several values of the flow speed. The
values of B are 0.1 to 0.9 in steps of 0.2. The other parameters are set as
7By/Fs =1 and a = 0.5.

As is seen in figure 6, the qualitative behavior of LTE solutions is similar
to that of RE solutions; the radiative flux in the comoving frame exponetially
decreases with the optical depth, while both the radiation energy density and
the radiation pressure approach the constant value at the large optical depth.
Furthermore, at the sufficiently large optical depth, irrespective of the value of
0, the radiation energy density approach the same value of LTE; cEy — 47 By.
This is the characteristics of the LTE case.

It should be noted that in the non-relativistic limit of 5 — 0 the solutions
(23.83) and (23.84) reduce to the relevant ones for the Earth’s atmosphere (cf.
Thomas, Stamnes 1999). In other words, the present solution is the relativistic

generalization of the previously known solutions.
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0 23.5: Comoving solutions for relativistic plane-parallel flows in the LTE case
with uniform blackbody intensity: (a) Normalized radiation energy density, (b)
normalized radiative flux, and (c) normalized radiation pressure. The values
of # are 0.1 to 0.9 in steps of 0.2. The other parameters are set as 7By/Fs = 1
and a = 0.5.

23.3.2 Eddington-Barbier Case

We also examine the non-uniform case. In particular, we assume the linear

approximation for By;
By(1) = Boo + B17 (23.73)

in the comoving frame. This is so-called the Eddington-Barbier relation in the
static atmosphere.

Using similar procedure and after some manipulations, the general solutions
for equations (23.70) and (23.71) with the Eddington-Barbier relation become

as
Fo = Ci1eM +Coe™™ +4yfrBy, (23.74)
1 1
CPO = ( — ﬁ) Cle>‘17 + ( — ﬁ) CQ@AQT
YA YA2
+AfrBo(T) + 17? J; An By, (23.75)

where the coefficients C7 and C5 are constants to be determined by the bound-
ary conditions, and the indeces A; and A, are given in equation (23.76).

We now impose the boundary conditions at the flow top of 7 = 0 and the
infinite optical depth instead of the finite optical depth for simplicity; we here
suppose a semi-infinte plane-parallel atmosphere. In order for the solution not
to diverge at the infinite optical depth of 7 — oo, the coefficient Cy = 0 since
A< 0and A > 0. At the flow top we set

Fo=F; at 7=0. (23.76)
Hence, the coefficient C; is determined as
Cy=F,—4vfrB. (23.77)

Since there are two freedom, Byg and B; in this case, we set one additional

boundary condition at the flow top,

cPy=2fF, at 7=0. (23.78)
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Then, the additional condition is obtained,

1 1 1 1 2—a
bp==-— — | — — —_ b 23.79
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where
7TB00
bo = 23.
o = 22 (23.80)
B
by = Fsl. (23.81)

Hence, we finally obtain the solutions for equations (23.70) and (23.71) in
the Eddington-Barbier case as

D byt (- fb) T (23.82)
cPy B fCEO
F,  F,
— oo (Wi - 6) (1= dyfby) (1 - M)
+4fbyT, (23.83)
where
Al =—5 [(2 —a)l + \/(2 —a)2I'2 + 4(1%3 @) F] ; (23.84)
and 1
2f = (=5 —B) —4fbo
Ay fby = (Vﬁ 5 (23.85)

The parameters are a, by, and (. In addition, there are two conditions for the

solution to be physical;

by > 0, (23.86)
dvfb, < 1. (23.87)

These solutions (23.94) and (23.95) are the relativistic Eddingto-Barbier solu-

tions.

Examples of these analytical solutions (23.94) and (23.95) are shown in figure
7 as a function of the optical depth for several values of the flow speed. The
values of 3 are 0.1 to 0.4 in steps of 0.1. The other parameters are set as
mBy/Fs = 1 and a = 0.9. In figure 7 the solid curves represent the present
solutions, whereas the dashed ones mean those of the RE case without heating
and cooling. In addition, the blackbody functions By in the present case are
also shown in figure 8. Due to the conditions (23.98) and (23.99), there is no
physical solutions when the flow speed becomes large.

As is seen in figure 7, the behavior of LTE solutions of the non-uniform
blackbody case is rather different from that of LTE solutions of the uniform
case; the radiative flux in the comoving frame exponetially decreases with the
optical depth but approaches some finite values, while both the radiation energy
density and the radiation pressure increases linearly at the large optical depth.

Indeed, at large optical depth analytical solutions (23.94) and (23.95) become,

respectively,
Fy
— = 4vfb 23.
5 = b (23.88)
cPy fcEy v3
= = 4 . 2 .
7 7 f(lab1+b0+bl7' ( 389)

Hence, at the large optical depth the radiation energy density approach the
same value of LTE; cEy — 4w By. This is the characteristics of the LTE case.



0 23.6: Comoving solutions for relativistic plane-parallel flows in the LTE case
with the Eddington-Barbier relation: (a) Normalized radiation energy density,
(b) normalized radiative flux, and (c¢) normalized radiation pressure. The values
of § are 0.1 to 0.4 in steps of 0.1. The other parameters are set as 7By/Fs = 1
and a = 0.9. The solid curves represent the present solutions, whereas the

dashed ones mean those of the RE case without heating and cooling.
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O 23.7: Blackbody function in the LTE case with the Eddington-Barbier rela-
tion. The values of § are 0.1 to 0.4 in steps of 0.1. The other parameters are
set as mBy/Fy =1 and a = 0.9.



