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22.1 Relativistic Radiative Transfer Equation

The radiative transfer equations are given in several literatures (Chandrasekhar
1960; Mihalas 1970; Rybicki, Lightman 1979; Mihalas, Mihalas 1984; Shu 1991;
Kato et al. 1998, 2008; Mihalas, Auer 2001; Peraiah 2002; Castor 2004). The
basic equations for relativistic radiation hydrodynamics are given in, e.g., the
appendix E of Kato et al. (2008) in general and vertical forms (See also Fukue
2008c).

In a general form the radiative transfer equation in the mixed frame, where
the variables in the inertial and comoving frames are used, is expressed as

1
c

∂I

∂t
+ (l · ∇) I = ργ3

(
1 +

v · l0
c

)3

×
[

j0
4π

−
(
κabs

0 + κsca
0

)
I0 + κsca

0

cE0

4π

]
, (22.1)

Here, v is the flow velocity, c is the speed of light, and γ (= 1/
√

1 − v2/c2)
is the Lorentz factor. In the left-hand side the frequency-integrated specific

intensity I and the direction cosine l are quantities measured in the inertial
(fixed) frame. In the right-hand side, on the other hand, the mass density
ρ, the frequency-integrated mass emissivity j0, the frequency-integrated mass
absorption coefficient κabs

0 , the frequency-integrated mass scattering coefficient
κsca

0 , the frequency-integrated specific intensity I0, the frequency-integrated
radiation energy density E0, and the direction cosine l0 are quantities measured
in the comoving (fluid) frame. In this paper, instead of the weakly anisotropic
Thomson scattering, we assume that the scattering is isotropic for simplicity.

Let us suppose a steady relativistic flow in the vertical direction. In the plane-
parallel geometry with the vertical axis z the transfer equation is expressed as
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where β (= v/c) is the normalized vertical speed, and µ (= cos θ) and µ0 are
the direction cosines in the inertial and comoving frames, respectively.

If the local thermodynamic equilibrium (LTE) holds in the comoving frame,

j0
4π

= κabs
0 B0, (22.3)

where B0 (= σT 4
0 /π) is the frequency-integrated blackbody intensity in the

comoving frame, T0 being the blackbody temperature. Introducing the optical
depth defined by

dτ = −
(
κabs

0 + κsca
0

)
ρdz, (22.4)

the transfer equation (22.2) then becomes

µ
dI

dτ
= γ3(1 + βµ0)3 [I0 − (1 − A)B0 − AJ0] , (22.5)

where
A ≡ κsca

0

κabs
0 + κsca

0

(22.6)

is the scattering albedo and J0 = cE0/(4π) is the mean intensity in the comov-
ing frame.

The specific intensity I and the direction cosine µ in the inertial frame are
related to the quantities in the comoving frame by

I(τ, µ) = γ4(1 + βµ0)4I0(τ, µ0), (22.7)

1



2

µ =
µ0 + β

1 + βµ0
. (22.8)

Inserting these relations to the transfer equation (22.5), we have the transfer
equation in the comoving frame;

γ (µ0 + β)
dI0

dτ
+ γ (µ0 + β) I0

d

dτ
ln

[
γ4(1 + βµ0)4

]
= I0 − AJ0 − (1 − A)B0. (22.9)

It should be noted that the equivalent forms of this simple equation (22.9)
are shown in several literatures (e.g., Mihalas, Mihalas 1984; Peraiah 2002;
Castor 2004). However, no explicit analytical solutions are found, although in
some lieterture (e.g., Peraiah 2002) the numerical solutions are shown and its
meanings are discussed.

22.2 Linear-Flow Approximation

In this paper, the flow speed is assumed to be constant for simplicity, and
we seek analytical solutions of the transfer equation (22.9) under appropriate
situations and boundary conditions. We first examine the relativistic radiative
transfer equation (22.9) under the linear-flow approximation in the comoving
frame.

In the linear-flow approximation the comoving intensity I0(τ, µ0) is serarated
into two parts; the upward intensity I+

0 (τ) for µ0 = +1 and the downward
intensity I−0 (τ) for µ0 = −1. The transfer equation (22.9) is then separated
into two equations:

γ (1 + β)
dI+

0

dτ
= I+

0 − AJ0 − (1 − A)B0, (22.10)

γ (1 − β)
dI−0
dτ

= −I−0 + AJ0 + (1 − A)B0. (22.11)

In this case, the frequency-integrated mean intensity J0 and the frequency-
integrated net flux (Eddington flux) H0 are expressed, respectively,
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2
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)
, (22.12)
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4π
=

1
2
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)
, (22.13)

where F0 is the radiative flux in the comoving frame.

22.2.1 Pure Scattering Case

We first consider the pure scattering case of A = 1, or the radiative equilib-
rium (RE) case, where j0 = κabs

0 cE0. In this case the transfer equations (22.10)
and (22.11) become
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0
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=

1
2
I+
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2
I−0 , (22.14)
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=
1
2
I+
0 − 1

2
I−0 . (22.15)

We easily integrate equations (22.14) and (22.15) to yield

(1 + β)I+
0 − (1 − β)I−0 = D0 (const.), (22.16)

and hence,

I−0 =
1 + β

1 − β
I+
0 − D0

1 − β
. (22.17)

Inserting this equation (22.17) into equation (22.14), we obtain general solu-
tions of these homogenious equations:

I+
0 = C0e

−γβτ +
D0

2β
, (22.18)

I−0 = C0
1 + β

1 − β
e−γβτ +

D0

2β
, (22.19)

where C0 is the integration costant.
We now impose the boundary condition at τ = 0. We suppose that there is

no irradiation at τ = 0; I−0 (0) = 0. Hence, the integration constant C0 becomes

C0 = −1 − β

1 + β

D0

2β
. (22.20)
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Furthermore, we replace D0/2 by H00, which is the constant flux in the non-
relativistic limit. Thus, we obtain the special solutions:

I+
0 =

H00

β

(
1 − 1 − β

1 + β
e−γβτ

)
, (22.21)

I−0 =
H00

β

(
1 − e−γβτ

)
, (22.22)

J0 =
H00

β

(
1 − 1

1 + β
e−γβτ

)
, (22.23)

H0 =
H00

1 + β
e−γβτ . (22.24)

In the non-relativistic limit of β ∼ 0, these solutions reduce usual linear-flow
solutions:

I+
0 = H00 (τ + 2) , (22.25)

I−0 = H00τ, (22.26)

J0 = H00 (τ + 1) , (22.27)

H0 = H00. (22.28)

These analytical solutions in the comoving frame under the linear-flow ap-
proximation are shown in figure 1. In figure 1a the upward and downward
intensities I±0 normalized by H00 are shown by solid and dashed curves, re-
spectively, for various values of the flow velocity, whereas in figure 1b the mean
intensity J0 and the net flux H0 normalized by H00 are shown by solid and
dashed curves, respectively. The values of β are 0 to 0.9 in steps of 0.1.

Here, we emphasize two characteristic properties of the relativistic radiative
transfer. The first is its exponential nature on the optical depth. Originally,
the radiative intensity has exponential behavior, since it is the solution of the
linear differential equation. However, in the analytical solutions like the linear-
flow ones or the Milne-Eddington ones in the non-relativistic radiative transfer
problems the quantities are proportional to the optical depth. In the rela-
tivistic radiative transfer such exponential nature revives. As a result, the
intensities approach constant values, while the net flux becomes zero, as an
optical depth increases. This exponential properties of the radiative quantites
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図 22.1: Linear-flow solutions in the comoving frame of relativistic plane-
parallel flows for various flow speeds: (a) Normalized upward and downward in-
tensities I±0 /H00 (solid and dashed curves, respectively), (b) Normalized mean
intensity J0/H00 and normalized net flux H0/H00 (solid and dashed curves,
respectively). The values of β are 0 to 0.9 in steps of 0.1 from top to bottom
for each curve.
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in the comoving frame were firstly found in Fukue (2008c) for the relativistic
Milne-Eddington solution. In the present linear-flow treatment the exponential
nature is clearly derived and shown.

It should be noted that Peraiah (1987) numerically solved the relativistic
transfer equation in the plane-parallel case, and obtained, e.g., the mean in-
tensity in the comoving frame, although he did not show the analytical form.
These properties originate from the aberration effect, as Peraiah (1987) already
mentioned.

The second is the relativistic modification on the apparent/effective optical
depth. In the relativistic radiative transfer the optical depth τ in the exponen-
tial term is changed to be Γτ , where Γ is generally a function of the velocity β

and its gradient. For example, in the present linear-flow solutions the effective
optical depth becomes γβτ as is seen in the solutions. This change of the appar-
ent/effective optical depth originates from the relativistic Lorentz contraction
(see, e.g., Abramowicz et al. 1991; Sumitomo et al. 2007; Fukue, Sumitomo
2009), and also found in, e.g., Fukue (2008c). However, in the present linear-
flow treatment the change of the effective optical depth is also clearly shown
analytically.

As for the quantities in the inertial frame, we transform the comoving quan-
tities to the inertial ones by the Lorentz transformation. For example, the
specific intensity in the inertial frame is expressed by equation (22.7). Hence,
in the present linear-flow approximation the upward intensity I+(τ) and the
downward intensity I−(τ) in the inertial frame are given respectively by

I+ = I+
0 γ4(1 + β)4 = I+

0

(
1 + β

1 − β

)2

, (22.29)

I− = I+
0 γ4(1 − β)4 = I+

0

(
1 − β

1 + β

)2

. (22.30)

Because of the aberration between the inertial and comoving frames, equation
(22.8), the mean intensity J and net flux H in the inertial frame are respectively
expressed as

J =
1
2

[∫ 1

β

I+dµ +
∫ β

−1

I−dµ

]

=
1
2

[
(1 − β)I+ + (1 + β)I−

]
, (22.31)

H =
1
2

[∫ 1

β

I+µdµ +
∫ β

−1

I−µdµ

]

=
1
2

[
(1 − β2)I+ − (1 + β2)I−

]
. (22.32)

These analytical solutions in the inertial frame are shown in figure 2. In fig-
ure 2a the upward and downward intensities I± normalized by H00 are shown
by thick solid and dashed curves, respectively, for various values of the flow ve-
locity, whereas in figure 2b the mean intensity J and the net flux H normalized
by H00 are shown by thick solid and dashed curves, respectively. The values of
β are 0, 0.1, 0.2, 0.3, 0.4, 0.5.

As is seen in figure 2a, the upward intensity in the inertial frame is Doppler-
boosted, while the downward intensity is Doppler-de-boosted, as the flow speed
increases. The mean intensity and the net flux are also changed by the Doppler
effect. In addition, when the flow speed is finite, the radiative quantities in the
inertial frame approach constant values, as the optical depth increases.

These properties of radiative quantities in the comoving and inertial frames
are qualitatively similar to those of the relativistic Milne-Eddington solution
found by Fukue (2008c). In Fukue (2008c), however, due to the assumption on
the Eddington factor, the flow speed is restricted in the range of β < 1/

√
3,

whereas there is no limitation on the flow speed in the present linear-flow
approximation.

22.2.2 General Case

We next consider the general case of A 6= 1. In this case the transfer equations
(22.10) and (22.11) are explicitly written as

γ (1 + β)
dI+

0

dτ
=

(
1 − A

2

)
I+
0 − A

2
I−0 − (1 − A)B0, (22.33)

γ (1 − β)
dI−0
dτ

= −
(

1 − A

2

)
I−0 +

A

2
I+
0 + (1 − A)B0. (22.34)
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図 22.2: Linear-flow solutions in the inertial frame of relativistic plane-parallel
flows for various flow speeds: (a) Normalized upward and downward intensities
I±/H00 (thick solid and dashed curves, respectively), (b) Normalized mean
intensity J/H00 and normalized net flux H/H00 (thick solid and dashed curves,
respectively). The values of β are 0 to 0.5 in steps of 0.1 from bottom to top
for I+ and H and from top to bottom for I− and J .

The general solutions of the homogenious part of these linear equations
(22.33) and (22.34) are

I+
0 = C1e

Γτ + C2e
−Γτ , (22.35)

I−0 = C3e
Γτ + C4e

−Γτ , (22.36)

where the coefficients Ci’s and index Γ are functions of β in the present rela-
tivistic case.

Inserting these solutions into equations (22.33) and (22.34), we can obtain
the form of Γ, and two relations among the coefficients. As a result, the general
solutions (22.35) and (22.36) are expressed as

I+
0 = C1e

Γτ + C2e
−Γτ , (22.37)

I−0 = C1PeΓτ + C2Qe−Γτ , (22.38)

where

Γ = −
(

1 − A

2

)
γβ ±

√(
1 − A

2

)2

γ2β2 + 1 − A, (22.39)

P =
2 − A − 2γ(1 + β)Γ

A
=

A

2 − A + 2γ(1 − β)Γ
, (22.40)

Q =
2 − A + 2γ(1 + β)Γ

A
=

A

2 − a − 2γ(1 − β)Γ
. (22.41)

In the limit of A = 1, these solutions reduce to those of the pure scattering
case.

As is well-known, the solutions of the inhomogenious equation are the combi-
nation of the general solutions of the homogenious part and the special solution
of the inhomogenious part. When B0 is constant, after some manipulations,
we finally obtain the solutions for equations (22.33) and (22.34) as

I+
0 = C1e

Γτ + C2e
−Γτ +

1 − β + βA

(1 + β)Γ2
(1 − A)B0, (22.42)

I−0 = C1PeΓτ + C2Qe−Γτ

− (1 + β)(P + Q) + 2(1 − β)PQ

(P − Q)Γ
γ(1 − A)B0. (22.43)
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図 22.3: Index Γ as a function of β for several values of A (= 0, 0.5, 0.8, 1). Solid
and dashed curves correspond to the cases of plus and minus signs, respectively.

It should be noted that in these solutions the coefficients C1 and C2 are deter-
mined by the boundary conditions.

Since solutions of the general case have somewhat complicated forms, we do
not show them, but show the exponential index Γ in figure 3 as a function of β

for several values of A (= 0, 0.5, 0.8, 1). Solid and dashed curves correspond to
the cases of plus and minus signs, respectively. As the flow speed β increases,
the index Γ increases and the effective optical depth Γτ increases. This is the
relativistic effect (cf. Abramowicz et al. 1991). In addition, As the albedo A

decreases, the index Γ increases. This behavior exists in the non-relativistic
case.

22.3 Two-Stream Approximation

In this section we examine the relativistic radiative transfer equation (22.9)
under the two-stream approximation in the comoving frame.

In the two-stream approximation the comoving intensity I0(τ, µ0) is serarated
into two parts; the averaged upward intensity I+

0 (τ) to some typical direction
µ̄+

0 and the averaged downward intensity I−0 (τ) to some typical direction µ̄−
0 .

The transfer equation (22.9) is also separated into two equations (cf. Thomas,
Stamnes 1999):

γ
(
µ̄+

0 + β
) dI+

0

dτ
= I+

0 − A

2
I+
0 − A

2
I−0 − (1 − A)B0, (22.44)

γ
(
µ̄−

0 − β
) dI−0

dτ
= −I−0 +

A

2
I+
0 +

A

2
I−0 + (1 − A)B0, (22.45)

where

µ̄±
0 ≡

∫ 1

0
µ0I

±
0 (τ, µ0)dµ0∫ 1

0
I±0 (τ, µ0)dµ0

. (22.46)

In this case, the frequency-integrated mean intensity J0, the frequency-
integrated net flux (Eddington flux) H0, the frequency-integrated mean ra-
diation pressure (K-integral), are expressed, respectively,

J0 =
cE0

4π
=

1
2

(
I+
0 + I−0

)
, (22.47)

H0 =
F0

4π
∼ 1

2
(
µ̄+

0 I+
0 − µ̄−

0 I−0
)
, (22.48)

K0 =
cP0

4π
∼ 1

2
(
µ̄2+

0 I+
0 + µ̄2−

0 I−0
)
. (22.49)

In the present study we assume that µ̄+
0 = µ̄−

0 = µ̄0 and µ̄2+
0 = µ̄2−

0 = (µ̄0)2.

22.3.1 Pure Scattering Case

We first consider the pure scattering case of A = 1, or the radiative equilib-
rium (RE) case, where j0 = κabs

0 cE0. In this case the transfer equations (22.44)
and (22.45) become

γ
(
µ̄+

0 + β
) dI+

0

dτ
=

1
2
I+
0 − 1

2
I−0 , (22.50)

γ
(
µ̄−

0 − β
) dI−0

dτ
=

1
2
I+
0 − 1

2
I−0 . (22.51)

Using the similar procedure in the linear-flow case and the boundary condi-
tion at τ = 0, we have analytical solutions for intensities,

I+
0 =

H00

β

(
1 − µ̄0 − β

µ̄0 + β
e−Γτ

)
, (22.52)
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図 22.4: Index Γ as a function of β. The direction cosine is fixed as µ̄2
0 = f =

1/3.

I−0 =
H00

β

(
1 − e−Γτ

)
, (22.53)

where
Γ =

β

γ(µ̄2
0 − β2)

. (22.54)

Radiative moments become

J0 =
H00

β

(
1 − µ̄0

µ̄0 + β
e−Γτ

)
, (22.55)

H0 =
H00µ̄0

µ̄0 + β
e−Γτ , (22.56)

K0 =
H00µ̄

2
0

β

(
1 − µ̄0

µ̄0 + β
e−Γτ

)
, (22.57)

and therefore, the Eddington factor is

f ≡ K0

J0
= µ̄2

0. (22.58)

In figure 4 the index Γ is shown as a function of β in the case of µ̄2
0 = f = 1/3.

As is seen in figure 4, As the flow speed β increases, the index Γ increases and
the effective optical depth Γτ also increases.

In the non-relativistic limit of β ∼ 0, these solutions reduce usual two-stream
solutions (see, e.g., Thomas, Stamnes 1999). If we set µ̄0 = 1, on the other
hand, these solutions reduce to those of the linear-flow approximation. In
addition, if we set µ̄2

0 = f , these solutions are quite similar to those of the
Milne-Eddington case (Fukue 2008c).

Here, we mention the critical properties of the index Γ. As is seen in equation
(22.54) and in figure 4, the index Γ diverges at β = ±µ0 (= ±1/

√
3 in this case).

This violation is due to the effect of aberration. Namely, the direction µ0 = −β

in the comoving frame corresponds to the direction µ = 0 in the inertial frame.
Hence, the two-stream approximation violates in the inertial frame at µ0 = −β.
As a result, if we set f = µ̄2

0 = 1/3 like a usual Eddington factor, then the
present two-stream approximation is limited in the range of β2 < 1/3 (cf. the
Milne-Eddington case in Fukue 2008c). This sigular behavior will be discussed
again in the last section.

On the contrary to the non-relativistic case, where the Eddington factor is
1/3 and some typical direction µ0 is also constant (∼ 1/2 − 1/

√
2), there are

no assurance that neither the Eddington factor f nor the typical direction µ0

is constant in the relativistic case. Indeed, under the local approximation the
relativistic Eddington factor does generally depend both on the velocity and
its gradient (e.g., Fukue 2008b, 2008d, 2009a). Hence, in the present case
the typical direction µ0 in the comoving frame would generally depend on the
velocity and its gradient, as a manner that µ0 → 1 as β → 1. However,
at the present stage we have little knowledge on the precise solutions of the
relativistic radiative transfer in such an extremely relativistic limit. Thus, the
determination of the form of µ0 is a future work; see, however, Fukue (2009a),
where f = (1 + 3β2)/(3 + β2) was found to be a good approximation in some
cases.
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22.3.2 General Case

We next consider the general case of A 6= 1 briefly. In this case the transfer
equations (22.44) and (22.45) are explicitly written as

γ
(
µ̄+

0 + β
) dI+

0

dτ
=

(
1 − A

2

)
I+
0 − A

2
I−0 − (1 − A)B0, (22.59)

γ
(
µ̄−

0 − β
) dI−0

dτ
= −

(
1 − A

2

)
I−0 +

A

2
I+
0 + (1 − A)B0.

(22.60)

Procedures and solutions are similar to those in the linear-flow case, but the
solutions have somewhat complicated forms, and therefore, we only show the
exponential index,

Γ = −
(
1 − A

2

)
γβ

γ2(µ̄2
0 − β2)

±

√(
1 − A

2

)2
γ2β2 + (1 − A)γ2(µ̄2

0 − β2)

γ2(µ̄2
0 − β2)

. (22.61)

In the non-relativistic limit of β ∼ 0, this index tends to Γ ∼
√

1 − A/µ̄0

(Thomas, Stamnes 1999).
In figure 5 the index Γ is shown as a function of β for several values of

A (= 0, 0.5, 0.8, 1) in the case of µ̄2
0 = f = 1/3. Solid and dashed curves

correspond to the cases of plus and minus signs, respectively. As the flow
speed increases and/or the albedo decreases, the index Γ increases and the
effective optical depth increases.
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図 22.5: Index Γ as a function of β for several values of A (= 0, 0.5, 0.8, 1) in
the case of µ̄2

0 = f = 1/3. Solid and dashed curves correspond to the cases of
plus and minus signs, respectively.


