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32.1 Relativistic Radiative Transfer Equation

The radiative transfer equations are given in several literatures (Chandrasekhar
1960; Mihalas 1970; Rybicki, Lightman 1979; Mihalas, Mihalas 1984; Shu 1991;
Kato et al. 1998, 2008; Mihalas, Auer 2001; Peraiah 2002; Castor 2004). The
basic equations for relativistic radiation hydrodynamics are given in, e.g., the
appendix E of Kato et al. (2008) in general and vertical forms (see also Fukue
2008c, 2010c).

32.1.1 General Form

In a general form the radiative transfer equation in the mixed frame, where
the variables in the inertial and comoving frames are used, is expressed as

1
c

∂I

∂t
+ (l · ∇) I =

(
ν

ν0

)3

ρ

[
j0
4π

− (κ0 + σ0) I0 + σ0
cE0

4π

]
, (32.1)

where c is the speed of light. In the left-hand side the frequency-integrated
specific intensity I and the direction cosine l are quantities measured in the in-
ertial (fixed) frame. In the right-hand side, on the other hand, the mass density
ρ, the frequency-integrated mass emissivity j0, the frequency-integrated mass
absorption coefficient κ0, the frequency-integrated mass scattering coefficient
σ0, the frequency-integrated specific intensity I0, and the frequency-integrated
radiation energy density E0 are quantities measured in the comoving (fluid)
frame. In this paper, instead of the weakly anisotropic Thomson scattering, we
assume that the scattering is isotropic for simplicity.

The Doppler effect, the aberration, and the transformation of the intensities
are expressed as

ν

ν0
= γ (1 + β · l0) , (32.2)

l =
ν0

ν

[
l0 +

(
γ − 1
β2

β · l0 + γ

)
β

]
, (32.3)

I =
(

ν

ν0

)4

I0, (32.4)

where ν and ν0 are the frequencies measured in the inertial and comoving
frames, respectively, the direction cosine l0 measureed in the comoving frame, β

(= v/c) the normalized velocity, v being the flow velocity, and γ (= 1/
√

1 − β2)
the Lorentz factor, β being v/c.

The zeroth and first moment equations are, respectively,

∂E

∂t
+

∂F k

∂xk
= ργ (j0 − κ0cE0) − ργ (κ0 + σ0)β · F 0, (32.5)

1
c2

∂F i

∂t
+

∂P ik

∂xk
= ργ

βi

c
(j0 − κ0cE0) − ρ (κ0 + σ0)

γ − 1
β2

βi

c
(β · F 0)

−1
c
ρ (κ0 + σ0)F i

0, (32.6)

where the frequency-integrated radiation energy density E, the frequency-
integrated radiative flux F , and the frequency-integrated radiation stress P ik

are measured in the inertial frame, while those with the subscript 0 are mea-
sured in the comoving frame.
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As a closure relation, we adopt the Eddington approximation in the comoving
frame:

P ik
0 = f ikE0, (32.7)

where f ik is the Eddington tensor, which is generally a function of the optical
depth and flow speed in the relativistic radiative flow.

32.1.2 Spherical Expression in the Comoving Frame

Let us suppose a relativistic spherical flow, e.g., a luminous black hole wind.
In the spherical geometry with the radius r the transfer equation (32.1) is
expressed as

1
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]
,(32.8)

where µ is the direction cosine in the inertial frame. Inserting the transforma-
tion (32.4) in the left-hand side, this equation (32.8) becomes
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]
. (32.9)

To calculate the derivatives of I0 (Mihalas, Mihalas 1984), we apply the chain
rules and after some manipulations we have

∂

∂t

∣∣∣∣
rµν

=
∂

∂t

∣∣∣∣
rµ0ν0

+
∂µ0

∂t

∣∣∣∣
rµ0ν0

∂

∂µ0
+

∂ν0

∂t

∣∣∣∣
rµ0ν0

∂

∂ν0

=
∂

∂t

∣∣∣∣
rµ0ν0

− γ2(1 − µ2
0)

∂β

∂t

∂

∂µ0
− γ2µ0ν0

∂β

∂t
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, (32.10)
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, (32.12)

where µ0 is the direction cosine in the comoving frame. In addition, the Doppler
shift (32.2) and the aberration (32.3) are respectively expressed as

ν

ν0
= γ(1 + βµ0), (32.13)

µ =
µ0 + β

1 + βµ0
. (32.14)

Using these expressions, after some manipulations we have the radiative
transfer equation in the comoving frame for the spherical flow:

γ(1 + βµ0)
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∂I0

∂µ0
+ 4γβ

1 − µ2
0

r
I0

−γ3(1 + βµ0)
[
(1 − µ2

0)
∂I0

∂µ0
− 4µ0I0

]
1
c

∂β

∂t

−γ3(µ0 + β)
[
(1 − µ2

0)
∂I0

∂µ0
− 4µ0I0

]
∂β

∂r

= ρ

[
j0
4π

− (κ0 + σ0) I0 + σ0
cE0

4π
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. (32.15)

Integrating the transfer equation (32.15) over a solid angle, we have the
zeroth and first moment equations in the comoving frame for the spherical
flow:

γ
∂cE0

c∂t
+ γ

∂F0

∂r
+ γβ

∂F0

c∂t
+ γβ

∂cE0

∂r
+

γ
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c∂t
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∂β

∂r
= ρ (j0 − κ0cE0) , (32.16)
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c∂t
+ γ
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∂r
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∂cP0

c∂t
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∂F0

∂r
+

γ
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∂β

c∂t
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∂β

∂r
= −ρ (κ0 + σ0)F0, (32.17)

where E0, F0, and P0 are the radiation energy density, the radiative flux, and
the radiation pressure in the comoving frame, respectively.
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In the present spherical one-dimensional flow, the closure relation (32.7) be-
comes

P0 = f(τ, β)E0, (32.18)

where f(τ, β) is the variable Eddington factor, and generally a function of the
optical depth, the flow speed, and the velocity gradient (Fukue 2008b, d). In
the plane-parallel flow (Fukue 2010c), the following form was adopted:

f(β) =
1 + 3β2

3 + β2
, (32.19)

which is 1/3 for β = 0 and approaches unity as β → 1 (Fukue 2009). In
the present spherical case, we adopt alternative appropriate forms, which are
shown later.

32.1.3 Steady Spherical Flow

Let us further suppose a time-independent steady flow in the radial direction.
In this case the transfer equation and moment equations in the comoving frame
become

γ(µ0 + β)
dI0
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− γ3(µ0 + β)

[
(1 − µ2

0)
∂I0

∂µ0
− 4µ0I0

]
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+γ(1 + βµ0)
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0

r

∂I0

∂µ0
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1 − µ2
0

r
I0

= ρ

[
j0
4π

− (κ0 + σ0) I0 + σ0
cE0

4π

]
, (32.20)

γ
dF0

dr
+ γβ

dcE0

dr
+ γ3 [2βF0 + (cE0 + cP0)]

dβ

dr
+

γ

r
[2F0 + β(3cE0 − cP0)]

= ρ (j0 − κ0cE0) , (32.21)

γ
dcP0

dr
+ γβ

dF0

dr
+ γ3 [2F0 + β(cE0 + cP0)]

dβ

dr
+

γ

r
[2βF0 − cE0 + 3cP0]

= −ρ (κ0 + σ0)F0. (32.22)

Introducing the optical depth defined by

dτ ≡ − (κ0 + σ0) ρdr, (32.23)

and the scattering albedo,
a ≡ σ0

κ0 + σ0
, (32.24)

the transfer equation (32.20) and the moment equations (32.21) and (32.22)
are finally expressed as

γ(µ0 + β)
dI0

dτ
− γ(1 + βµ0)

1 − µ2
0

ρ(κ0 + σ0)r
∂I0

∂µ0
− 4γβ

1 − µ2
0

ρ(κ0 + σ0)r
I0

−γ3(µ0 + β)
[
(1 − µ2

0)
∂I0

∂µ0
− 4µ0I0

]
dβ

dτ

= I0 −
1
4π

j0
κ0 + σ0

− a
cE0

4π
, (32.25)

γ
dF0

dτ
+ γβ

dcE0

dτ
− γ

ρ(κ0 + σ0)r
[2F0 + β(3cE0 − cP0)]

+γ3 [2βF0 + (cE0 + cP0)]
dβ

dτ
= − j0

κ0 + σ0
+ (1 − a)cE0, (32.26)

γ
dcP0

dτ
+ γβ

dF0

dτ
− γ

ρ(κ0 + σ0)r
[2βF0 − cE0 + 3cP0]

+γ3 [2F0 + β(cE0 + cP0)]
dβ

dτ
= F0. (32.27)

Here, we further introduce the spherical variables by

L0 ≡ 4πr2F0, (32.28)

D0 ≡ 4πr2cE0, (32.29)

Q0 ≡ 4πr2cP0, (32.30)

and the moment equations (32.26) and (32.27) become

γ
dL0

dτ
+ γβ

dD0

dτ
− γβ

D0 − Q0

ρ(κ0 + σ0)r
+ γ3 (2βL0 + D0 + Q0)

dβ

dτ

= − 4πr2

κ0 + σ0
(j0 − κ0cE0) , (32.31)

γ
dQ0

dτ
+ γβ

dL0

dτ
− γ

Q0 − D0

ρ(κ0 + σ0)r
+ γ3 [2L0 + β(D0 + Q0)]

dβ

dτ

= L0, (32.32)

and the closure relation (32.18) is written as

Q0 = f(τ, β)D0. (32.33)
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If we assume the streaming limit of D0 = Q0 (f = 1) with a constant speed
in these equations (32.31) and (32.32), we have the exponential type solutions,
which were obtained in Fukue (2010b). In this paper we consider more general
cases of Q0 = fD0.

Using this closure relation (32.33), the Eddington factor being not yet deter-
mined, and the definition of the optical depth (32.23), the relativistic moment
equations (32.31) and (32.32) are expressed as

γ
dL0

dτ
+ γβ

dD0

dτ
+ γβ

1 − f

r
D0

dr

dτ
+ γ3 [2βL0 + (1 + f)D0]

dβ

dτ

= − 4πr2

κ0 + σ0
(j0 − κ0cE0) , (32.34)

γ
d(fD0)

dτ
+ γβ

dL0

dτ
− γ

1 − f

r
D0

dr

dτ
+ γ3 [2L0 + β(1 + f)D0]

dβ

dτ
= L0. (32.35)

After several manipulations and rearrangement, the relativistic moment equa-
tions (32.34) and (32.35) in the comoving frame are finally expressed as

γ(f − β2)
f

dL0

dτ
+ γβ

(
1 − f2

fr
− 1

f

df

dr

)
D0

dr

dτ

+γ3

[
2β

(
1 − 1

f

)
L0 + (1 + f)

(
1 − β2

f

)
D0

]
dβ

dτ

= − 4πr2

κ0 + σ0
(j0 − κ0cE0) −

β

f
L0, (32.36)

γ
(
f − β2

) dD0

dτ
+ γ

[
df

dr
− (1 − f)(1 + β2)

r

]
D0

dr

dτ
+ 2γL0

dβ

dτ

= L0 + β
4πr2

κ0 + σ0
(j0 − κ0cE0) . (32.37)

After we determine the appropriate form of the variable Eddington factor, we
can solve the moment equations (32.36) and (32.37) in some restricted cases.

Before solving the moment equations, we derive a relation between the optical
depth τ and radius r. If the flow is steady, as is assumed, the continuity
equation for the spherical case is written as

4πr2ργβc = Ṁ, (32.38)

where Ṁ is the constant mass-outflow rate. Using this continuity equation
(32.38), assuming the opacities are constant, and imposing the boundary con-
dition of τ = 0 at r = ∞, we can integrate the optical depth (32.23) to give

τ =
Ṁ(κ0 + σ0)

4πγβc

1
r

= ρ(κ0 + σ0)r, (32.39)

which is also written as
τ

τc
=

rc

r
, (32.40)

where the subscript c denotes some reference position (core radius). It should
be noted that the optical depth at the core radius is related to the core radius
by

τc =
ṁrg

2γβrc
, (32.41)

where ṁ (= Ṁ/ṀE) is the mass-outflow rate normalized by the critical rate
ṀE (= LE/c2), LE being the Eddington luminosity of the central object, and rg

(= 2GM/c2) is the Schwarzshild radius of the central object. In what follows,
we use these relations, if necessary.

32.2 Radiative Equilibrium

We first consider the case of the radiative equilibrium (RE) without heating
and cooling. If the radiative equilibrium holds in the whole flow, and there is
no heating or cooling, then j0 = κ0cE0, and the relativistic moment equations
(32.36) and (32.37) become

γ(f − β2)
f

dL0

dτ
+ γβ

(
1 − f2

fr
− 1

f

df

dr

)
D0

dr

dτ

+γ3

[
2β

(
1 − 1

f

)
L0 + (1 + f)

(
1 − β2

f

)
D0

]
dβ

dτ

= −β

f
L0, (32.42)

γ
(
f − β2

) dD0

dτ
+ γ

[
df

dr
− (1 − f)(1 + β2)

r

]
D0

dr

dτ
+ 2γL0

dβ

dτ

= L0. (32.43)



5

These equations (32.42) and (32.43) are rather complicated yet, since they
include the velocity gradient term and the derivative of the radius, whose are
connected with the hydrodynamical equations. Of these, except for the central
accelerating region, the wind speed weakly depends on the optical depth and
is almost constant in the terminal stage. Hence, as already stated, the flow
speed β is assumed to be constant in this paper. On the other hand, the
radius-derivative term depends on the optical depth. Indeed, it is expressed as

dr

dτ
= − 1

(κ0 + σ0)ρ
= − r

τ
∝ −τ−2. (32.44)

Instead, the second term on the left-hand side of equation (32.43) can be
dropped, if we impose the restricted condition on the Eddington factor as

1 − f2

r
− df

dr
= 0. (32.45)

This equation (32.45) is easily integrated to give

f =
C(β)r2 − 1
C(β)r2 + 1

, (32.46)

where C(β) is an integration constant, and generally a function of the constant
flow speed β. We impose the boundary condition at the core radius such as

f =
1 + 3β2

3 + β2
at r = rc, (32.47)

and the appropriate Eddington factor requested to the present case finally
becomes

f =
2γ2(1 + β2)r̂2 − 1
2γ2(1 + β2)r̂2 + 1

=
2γ2(1 + β2) − τ̂2

2γ2(1 + β2) + τ̂2
, (32.48)

where r̂ = r/rc and τ̂ = τ/τc. This variable Eddington factor (32.48) satisfies
the condition: f → 1/3 when r → rc and β → 0, and f → 1 when r → ∞
(τ → 0) or β → 1. The behavior of this Eddington factor is shown in figure 1.

Under these restrictive conditions, after several manipulations, equations
(32.42) and (32.43) become

dL0

dτ
= −ΓL0, (32.49)

γ
1
g

d

dτ

[
g(f − β2)D0

]
= L0. (32.50)
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図 32.1: Eddington factor f appropriate for the RE case as a function of the
optical depth τ for the various values of the flow speed β. The values of β are
0 to 0.9 in steps of 0.1 from bottom to top.

In these equations,

Γ ≡ β

γ(f − β2)
(32.51)

is a function of the flow speed and the optical depth and it becomes

Γ =
γβ

1 + β2

2τ̂2

2 − τ̂2
+ γβ (32.52)

for the Eddington factor (32.48), while g is the curvature factor defined by

ln g ≡ −
∫ τ

τc

(1 − f)(1 + β2)
(f − β2)r

dr

dτ
dτ ′, (32.53)

and become in the present case

g =
τ̂3

2 − τ̂2
. (32.54)

Since the index Γ is analyticall expressed by the optical depth, the differential
equation (32.49) can analytically integrated to give the comoving luminosity
L0. Imposing the boundary condition of Ls at τ = 0, we finally have the
comoving luminosity for the RE case:

L0

Ls
=

(√
2 − τ̂√
2 + τ̂

)b

exp
(

1√
2γ2

bτ̂

)
, (32.55)
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図 32.2: Comoving lumonosity for relativistic spherical flows in the RE case
without heating and cooling. The values of β are 0 to 0.9 in steps of 0.1 from
top to bottom. The optical depth τc at the core radius is set to be 10.

where

b =
√

2γβ

1 + β2
τc. (32.56)

The analytical solutions of the comoving luminosity (32.55) are shown in
figure 2 as a function of the optical depth for several values of the flow speed.
The values of β are 0 to 0.9 in steps of 0.1.

Although the comoving luminosity (32.55) has an exponential term, the
power law behavior is dominant in this case. In the non-relativistic limit of
β → 0, b → 0 and the solution reduces to

L0

Ls
∼ 1 − b√

2
τ̂ ∼ 1 − βτ. (32.57)

In the extremely relativistic limit of β → 1, on the other hand, b → γτc/
√

2
and the solution reduces to

L0

Ls
∼

(√
2 − τ̂√
2 + τ̂

)b

. (32.58)

In contrast to this comoving luminosity, it is yet difficult to obtain analytical
solutions of the spherical radiation energy density D0. Even in the extremely
relativistic limit, we cannot obtain the analytical solution for D0.

32.3 Local Thermodynamic Equilibrium

Next, we consider the case of the local thermodynamic equilibrium (LTE)
with a uniform source function. If the local thermodynamic equilibrium (LTE)
holds in the comoving frame,

j0
4π

= κ0B0, (32.59)

where B0 (= σT 4
0 /π) is the frequency-integrated blackbody intensity in the

comoving frame, T0 being the blackbody temperature, and generally a function
of the height r or the optical depth τ , but assumed to be constant in what
follows.

In this case the relativistic moment equations (32.36) and (32.37) become

γ(f − β2)
f

dL0

dτ
+ γβ

(
1 − f2

fr
− 1

f

df

dr

)
D0

dr

dτ

+γ3

[
2β

(
1 − 1

f

)
L0 + (1 + f)

(
1 − β2

f

)
D0

]
dβ

dτ

= − κ0

κ0 + σ0
(W0 − D0) −

β

f
L0, (32.60)

γ
(
f − β2

) dD0

dτ
+ γ

[
df

dr
− (1 − f)(1 + β2)

r

]
D0

dr

dτ
+ 2γL0

dβ

dτ

= L0 + β
κ0

κ0 + σ0
(W0 − D0), (32.61)

where
W0 ≡ 16π2r2B0 (32.62)

is the spherical source function.
These equations (32.60) and (32.61) can be rearranged as

γ(f − β2)
f

dL0

dτ
+

[
γβ

f

(
1 − f2

r
− df

dr

)
dr

dτ
− κ0

κ0 + σ0

]
D0

+γ3

[
2β

(
1 − 1

f

)
L0 + (1 + f)

(
1 − β2

f

)
D0

]
dβ

dτ

= − κ0

κ0 + σ0
W0 −

β

f
L0, (32.63)
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γ
(
f − β2

) dD0

dτ
+

{
γ

[
df

dr
− (1 − f)(1 + β2)

r

]
dr

dτ
+ β

κ0

κ0 + σ0

}
D0

+2γL0
dβ

dτ
= L0 + β

κ0

κ0 + σ0
W0. (32.64)

These equations (32.63) and (32.64) are yet too complicated to solve analyti-
cally.

Hence, in order to simplify these equations by dropping the second terms
on the left-hand sides of equations (32.63) and (32.64), we impose the two
conditions:

γβ

f

(
1 − f2

r
− df

dr

)
dr

dτ
− κ0

κ0 + σ0
= 0, (32.65)

γ

[
df

dr
− (1 − f)(1 + β2)

r

]
dr

dτ
+ β

κ0

κ0 + σ0
= 0. (32.66)

Eliminating κ0/(κ0 + σ0) from equations (32.65) and (32.66), we obtain the
differential equation for the variable Eddington factor f ,

df

dr
+

f − 1
r

= 0 (32.67)

as long as dr/dτ 6= 0.
This equation (32.67) is easily integrated to give

f = 1 − C(β)
r̂

, (32.68)

where C(β) is an integration constant, and generally a function of the constant
flow speed β. We impose the boundary condition at the core radius such as

f =
1 + 3β2

3 + β2
at r = rc, (32.69)

and the appropriate Eddington factor requested to the present case finally
becomes

f = 1 − 2(1 − β2)
3 + β2

1
r̂

= 1 − 2(1 − β2)
3 + β2

τ̂ , (32.70)

where r̂ = r/rc and τ̂ = τ/τc. This variable Eddington factor (32.70) satisfies
the condition: f → 1/3 when r → rc and β → 0, and f → 1 when r → ∞
(τ → 0) or β → 1. The behavior of this Eddington factor is shown in figure 3.
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図 32.3: Eddington factor f appropriate for the LTE case as a function of the
optical depth τ for the various values of the flow speed β. The values of β are
0 to 0.9 in steps of 0.1 from bottom to top.

Under these restrictive conditions, after several manipulations, equations
(32.63) and (32.64) become

dL0

dτ
= −ΓL0 − ∆

κ0

κ0 + σ0
W0, (32.71)

dD0

dτ
=

Γ
β

L0 + Γ
κ0

κ0 + σ0
W0, (32.72)

where

Γ ≡ β

γ(f − β2)
=

γβ(3 + β2)
3 + β2 − 2τ̂

, (32.73)

∆ ≡ f

γ(f − β2)
= γ

3 + β2 − 2(1 − β2)τ̂
3 + β2 − 2τ̂

, (32.74)

respectively, in the present case.
Since the index Γ is analyticall expressed by the optical depth, the solu-

tion of the homegeneous part of equation (32.71), where W0 is set to be 0, is
analytically obtained as

L0

Ls
= (1 − pτ̂)q

, (32.75)
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図 32.4: Comoving lumonosity for relativistic spherical flows in the LTE case
with a unform source function. The values of β are 0 to 0.9 in steps of 0.1 from
top to bottom. The optical depth τc at the core radius is set to be 10, and the
value of the source function [κ0/(κ0 + σ0)]W0/Ls is set to be unity. The solid
curves represent the present analytical solutions, while the dashed ones mean
the solutions of the homogeneous part.

where

p ≡ 2
3 + β2

, (32.76)

q ≡ γβ(3 + β2)
2

τc. (32.77)

When the spherical source function W0 is uniform and κ0/(κ0 + σ0) is also
constant, the anlytical solution of equation (32.71) can be obtained after some
manipulations as

L0

Ls
= (1 − pτ̂)q +

γτc

1 − q

[(
3 + β2

2
− β

γτc

)
− τ̂

γ2

]
κ0

κ0 + σ0

W0

Ls
.(32.78)

The analytical solutions of the comoving luminosity (32.78) are shown in
figure 4 as a function of the optical depth for several values of the flow speed.
The values of β are 0 to 0.9 in steps of 0.1.

In the LTE case the comoving luminosity (32.78) has the power law form. In
the non-relativistic limit of β → 0, p → 2/3 and q → 3βτc/2, and the solution

becomes a linear function of τ . In the extremely relativistic limit of β → 1, on
the other hand, p → 1/2 and q → 2γτc, the solution reduces to

L0

Ls
∼ (1 − pτ̂)q − κ0

κ0 + σ0

W0

Ls
. (32.79)

On the contrary to the RE case, we can obtain the analytical solutions of the
spherical radiation energy density D0. However, it is rather complicated and
we omit the expression for D0.


