14 回転星の大気構造

太陽系、降着円盤、銀河系などでは、回転の 効果が大きいために、全体として円盤状になっ ている。これらの天体ほどではなくても、惑 星にせよ恒星にせよ天体の大部分は自転して おり、そのため多かれ少なかれ自転による変 形を受けている。ここでは、星の大気構造に与 える回転の効果を調べてみよう(図14・1)。

図14.1 木星と土星(NASA)

14.1 自転している天体

木星や太陽など、自転している星の具体例 をいくつかあげておこう。

(1)木星

木星は地球の 10 倍も大きいにもかかわら ず、わずか 10 時間弱で自転している。それ がため形状は赤道方向に膨れた偏平楕円体に なっている。

図14.2 赤道半径 R_e と極半径 R_p

具体的な数値として、まず形状に関する諸 量を出してみよう。木星の赤道半径を R_e、極 半径を R_p とすると(図14・2) これらは、 それぞれ、

$$R_{\rm e} = 7.15 \times 10^4 \,\,{\rm km}$$
 (14.1)

$$R_{\rm p} = 6.68 \times 10^4 \ \rm km \qquad (14.2)$$

である。形状の扁平度を表す指標として、長軸 の長さと短軸の長さの差を長軸の長さで割っ たものを考え、偏平率(ellipticity)を定義す る。完全な円では偏平率は0だが、木星の偏 平率 ϵ は、

$$\epsilon \equiv \frac{R_{\rm e} - R_{\rm p}}{R_{\rm e}} = 0.065 \qquad (14.3)$$

になる。

また、木星の質量 $M_{\rm J}$ は、 M_{\oplus} (= 5.98 × 10^{27} g)を地球の質量として、

$$M_{\rm J} = 317.83 M_{\oplus}$$
 (14.4)

である。したがって、木星の平均密度 $\bar{\rho}_{J}$ は、

$$\bar{\rho}_{\rm J} = 1.33 \text{ g cm}^{-3}$$
 (14.5)

になる。さらに、木星の組成は、おおよそ、水 素分子 H₂ が 89 %、ヘリウム He が 11 %で ある。

なお、木星の自転周期は、場所によって若 干違うが、以下の3つがよく使われる。

表 14.1	木星の	の自転周期
システムI	赤道域	$9^{ m h}50^{ m m}30^{ m s}$
システム II	中緯度	$9^{ m h}55^{ m m}40.6^{ m s}$
システム III	固体核	$9^{ m h}55^{ m m}29.37^{ m s}$

(2)土星

土星も地球の 10 倍近く大きいのに、やは り、わずか 10 時間ほどで自転している。そし て木星と同様、形状は赤道方向に膨れた偏平 楕円体になっている。

まず形状に関する諸量としては、土星の赤 道半径を $R_{\rm e}$ 、極半径を $R_{\rm p}$ とすると、それぞれ、

$$R_{\rm e} = 6.03 \times 10^4 \,\,{\rm km}$$
 (14.6)

$$R_{\rm p} = 5.38 \times 10^4 \ \rm{km} \tag{14.7}$$

である。したがって、土星の偏平率 ϵ は、

$$\epsilon = \frac{R_{\rm e} - R_{\rm p}}{R_{\rm e}} = 0.108$$
 (14.8)

になる(かなり大きい)。 また土星の質量 $M_{\rm S}$ は、

$$M_{\rm S} = 95.16 M_{\oplus}$$
 (14.9)

で、したがって平均密度 $\bar{\rho}_{\rm S}$ は、

$$\bar{\rho}_{\rm S} = 0.69 \text{ g cm}^{-3}$$
 (14.10)

になる(水より小さい!)。さらに、土星の組 成は、おおよそ、水素分子 H₂ が 90 %、ヘリ ウム He が 10 %である。

なお、土星の自転周期も、場所によって若 干異なる。

表 14.2	土星の自転周期
赤道域	$10^{h}14^{m}$
中緯度	$10^{ m h}39^{ m m}$
固体核	$10^{ m h}39.9^{ m m}$

(3)太陽

太陽も約1ヶ月ぐらいで自転している(図 14・3)。しかも自転の度合いは、太陽の赤 道から測った緯度によって異なり、赤道では やや早くて27日ぐらいで自転しているが、極 に向かうほど自転速度は遅くなり、極付近で は30日以上かかって自転している。ただし、 太陽の場合、自転の度合いはあまり大きくな いので、太陽の形状の球形からのずれはほと んどない。

(4)高速自転星

主系列星の中でみると、太陽のような表面 温度が低温の星に比べ、高温度星の自転速度 は比較的大きいことが知られている(図14・ 4)。具体的には、スペクトル型がG型の太陽 の自転速度が 2 km s^{-1} ほどなのに対し、B型 からA型の星の自転速度はしばしば 100 km s^{-1} 前後もある。とくに、B型星の一部で B型 輝線星と呼ばれる星では、自転速度が $200 \sim$ 300 km s^{-1} にもなる。そのため、これらの星 は高速自転星と呼ばれている。表面温度が高 温の星が高速で自転している原因(あるいは 表面温度が低温の星の自転速度が小さくなった理由)はまだよくわかっていない。

問14.1 木星と土星とでは自転周期はほとんど同じ なのに、土星の方が木星より偏平率が大きい理由は何 故だろうか?

14.2 回転星の大気モデル

回転星の大気は本質的に2次元的な構造に なっているので、太陽コロナで考えたような、 半径方向1次元といった単純な取り扱いはで きない。しかし、以下のように、ポテンシャ ルを用いれば、回転星の大気構造を比較的容 易に調べることができる。

14.2.1 静水圧平衡

回転星の大気中の各点では、星の物質によ る重力、回転に伴う遠心力、そしてガスの圧 力勾配力の3つの力が働いている(図14・ 3)。回転星の大気で強い対流などがなく、放 射や磁場などの力が働いていなければ、大気 中の各点ではこれらの3つの力が釣り合った 静水圧平衡の状態になっていると考えること ができる。静水圧平衡における力の釣り合い をベクトル的に書くと、

$$-\frac{1}{\rho}\boldsymbol{\nabla}P + \boldsymbol{g} + \boldsymbol{g}_{c} = 0 \qquad (14.11)$$

のように表せる。ただし $\nabla(+ \vec{J} \vec{J})$ はベク トル演算子で、また g は重力加速度(単位質 量あたりの重力) g_c は遠心力加速度(単位 質量あたりの遠心力)である。

まず最初の圧力勾配力についてだが、回転 星の自転軸を z とする円筒座標系 (r, φ, z) で は、圧力勾配力の成分は、

$$\frac{1}{\rho} \nabla P = \left(\frac{1}{\rho} \frac{\partial P}{\partial r}, \frac{1}{\rho r} \frac{\partial P}{\partial \varphi}, \frac{1}{\rho} \frac{\partial P}{\partial z} \right) \\ = \left(\frac{1}{\rho} \frac{\partial P}{\partial r}, 0, \frac{1}{\rho} \frac{\partial P}{\partial z} \right)$$
(14.12)

と表わすことができる。ただし回転対称性か ら、 φ -成分は0とした。

つぎに重力場だが、簡単のために、回転星 の質量は中心核に集中しており、回転星の大 気は十分希薄で、したがって大気中の重力場 は中心核の重力場で近似できるとしよう(す なわち中心核の質量に比べ大気の質量を無視 する)。中心核の質量をM、中心からの距離 を $R(=\sqrt{r^2+z^2})$ とすると、大気中のある 点における重力(加速度)の強さは GM/R^2 で、これは中心方向を向いている(図14・ 3)。半径方向の成分は、これにr/Rをかけ たものになり、また鉛直方向の成分はz/Rを かけたものになる。したがって重力加速度 gの成分表示は、

$$\boldsymbol{g} = \left(-\frac{GMr}{R^3}, 0, -\frac{GMz}{R^3}\right)$$
(14.13)

となる。

最後に遠心力だが、大気全体が角速度 Ω で 一様回転しているとすると、遠心力(加速度) *r*Ω² は半径方向のみに働く(図14・5)し たがって、遠心力加速度 *g*の成分表示は、

$$\boldsymbol{g}_{\mathrm{c}} = \left(r\Omega^2, 0, 0\right) \tag{14.14}$$

となる。

以上を合わせると、静水圧平衡の式(14.11) の半径方向と鉛直方向の成分は、

$$\frac{1}{\rho}\frac{\partial P}{\partial r} = -\frac{GMr}{(r^2 + z^2)^{3/2}} + r\Omega^2(14.15)$$
$$\frac{1}{\rho}\frac{\partial P}{\partial z} = -\frac{GMz}{(r^2 + z^2)^{3/2}}$$
(14.16)

と表される(回転対称性から回転角方向は0 = 0 という自明な式になる)。これに状態方程式:

$$P = K \rho^{\gamma}$$
; K と γ は定数 (14.17)

を加えたものが、回転星の構造を決める基本 方程式になる。

上の力学的釣り合いの式からすぐわかるこ とは、回転星の半径に最大半径が存在するこ とである。回転星の質量 M と回転の角速度 Ω が決まっているとしよう。このとき回転星 の大気が膨らんで半径が大きくなっていくと、 表面付近での重力は(中心からの距離の2乗 に反比例して)小さくなる一方、(半径に比例 する)遠心力は次第に大きくなる。この効果 は赤道面でもっとも顕著であり、回転星の半 径がある値までなると、ついには赤道面で遠 心力の方が大きくなり、ガスは遠心力によっ て赤道付近から周辺に流れ出すのだ。これを ブレークアップ(breakup)と呼んでいる。た とえば、B型輝線星のような高速自転星では、 星の周辺にガスの円盤が存在することが観測 されている。B型輝線星では、赤道面でブレー クアップを起こしており、星の赤道から大気 ガスが放出されて、それが星周ガス円盤となっ ているのかもしれない。

問 14.2 回転星の質量 M と回転の角速度 Ω が与えられたときの、赤道面におけるブレークアップの条件を求めよ。またその条件から、回転星の最大半径 r_{\max} が M と Ω で、

$$r_{\rm max} = (GM/\Omega^2)^{1/3} \tag{14.18}$$

となることを示せ。

14.2.2 有効ポテンシャル

静水圧平衡の式:(14.15)式と(14.16)式 は、ここで考えている回転星の大気構造を表 す式ではあるが、これらの式自体から構造を 求めるのは難しい。しかし、これらの式を積 分してポテンシャルを求めると、それから大 気構造を知ることが容易にできる。そこで、 状態方程式(14.17)の助けを借りながら、静 水圧平衡の式を積分していこう。

まず(14.17)式を *z*方向の(14.16)式に 代入すると、

$$K\gamma\rho^{\gamma-2}\frac{\partial\rho}{\partial z} = -\frac{GMz}{(r^2+z^2)^{3/2}} \qquad (14.19)$$

となるが、左辺が $\frac{K\gamma}{\gamma-1} \frac{\partial}{\partial z} \rho^{\gamma-1}$ と変形できることに注意しながら、r を固定して z に関して積分すると、

$$\frac{K\gamma}{\gamma-1}\rho^{\gamma-1} = \frac{\gamma}{\gamma-1}\frac{P}{\rho} = \frac{GM}{\sqrt{r^2+z^2}} + f(r)$$
(14.20)

となる。ただし、積分定数に相当する f(r) は、 今の場合、r の任意関数である。

つぎに、上の(14.20)式を r で偏微分す ると、

$$\frac{1}{\rho}\frac{\partial P}{\partial r} = -\frac{GMr}{(r^2 + z^2)^{3/2}} + \frac{df}{dr} \qquad (14.21)$$

となり、*r*方向の(14.15)式と比較すること により、*f*(*r*)を決める微分方程式:

$$\frac{df}{dr} = r\Omega^2 \tag{14.22}$$

が得られる。この微分方程式を r に関して積 分すると、

$$f(r) = \frac{\Omega^2}{2}r^2 + \mathbf{\overline{f}}\mathbf{3}\mathbf{\overline{c}}\mathbf{3}$$
 (14.23)

となる。

以上をまとめると、静水圧平衡を積分した 式は、結局、

$$\frac{\gamma}{\gamma-1}\frac{P}{\rho} = \frac{GM}{\sqrt{r^2+z^2}} + \frac{\Omega^2}{2}r^2 +$$
積分定数
(14.24)

となり、あるいは、綺麗な形に整理すると、

$$\frac{\gamma}{\gamma - 1} \frac{P}{\rho} + \phi_{\text{eff}} = -\mathbf{\hat{z}}$$
(14.25)

と表せる¹。ただしここで、

$$\phi_{\rm eff} = -\frac{GM}{\sqrt{r^2 + z^2}} - \frac{\Omega^2}{2}r^2 \qquad (14.26)$$

は、重力ポテンシャル $-GM/\sqrt{r^2+z^2}$ と遠心 力ポテンシャル $-\Omega^2 r^2/2$ を合わせたもので、 有効ポテンシャル(effective potential)と呼 ばれるものだ。

さてそこで、(14.25)式の右辺の定数の物理 的意味を考えてみよう。この定数項はもとも とは積分によって生じた積分定数であり、も との微分方程式の境界条件によって決まる項 である。現在の問題での境界条件は、回転星 の表面でガス密度が0になるという条件が適 当である。表面のどこでもいいのだが、簡単 のために赤道で条件を課そう。回転星の赤道 半径を r_eとすると、境界条件は、

$$r = r_{\rm e}, z = 0$$
 で $\rho = 0$ (したがって $P/\rho = 0$)
(14.27)

と表せる。この境界条件を(14.25)式に入れ ると、最終的に、

$$\frac{\gamma}{\gamma - 1} \frac{P}{\rho} + \phi_{\text{eff}} = \phi_{\text{e}} \qquad (14.28)$$

が得られる。ただしここで、

$$\phi_{\rm e} = -\frac{GM}{r_{\rm e}} - \frac{\Omega^2}{2} r_{\rm e}^2 \tag{14.29}$$

は有効ポテンシャル ϕ_{eff} の赤道面での値である。またこのとき密度分布は、

$$\rho = \left[\frac{\gamma - 1}{K\gamma}(\phi_{\rm e} - \phi_{\rm eff})\right]^{\frac{1}{\gamma - 1}}$$
(14.30)

となる。

有効ポテンシャル ϕ_{eff} は、(14.25)式からも わかるように、動径 r と高さ z の関数だ。し たがって、有効ポテンシャルの値が一定の点 を結ぶと、その点は空間内である図形を描く ことになる。このような有効ポテンシャルが 等しい点を結んでできる面を等ポテンシャル 面(equi-potential surface)と呼んでいる(具 体的な形は後で出てくる)。ところで、上の (14.30)式からは、明らかに、有効ポテンシャ ルが一定の面で密度も(また圧力も)一定に なる。すなわち、今の場合、等ポテンシャル 面と等密度面(equi-density surface)および 等圧面(equi-pressure surface : isobar)はす べて一致するのだ²。したがって、有効ポテン

¹この整理は、変数を別の変数に置き換えているだけのように見えるかもしれないが、バラバラだった積分項を有効ポテンシャルという形にまとめあげることで、まず、一般性・拡張性が非常に高くなる。また審美的にも、有効ポテンシャルで整理された形の方が式が美しくなる。最後に、物理的にも意味のある有効ポテンシャルで議論する方が、以下見るように、はるかに見通しがよくなるのである。

²正確にいえば、等ポテンシャル面と等密度面と等 圧面が平行であるということを意味しており、面の形 状は同じ形になるが、値自体や変化幅は一般に異なる。

シャルを調べて等ポテンシャル面の形状を求 めれば、同時に、密度分布など大気の構造が わかることになるのである。

等ポテンシャル面の 2 次元的な形状はすぐ つぎに考えるが、その前に、赤道面における ポテンシャルの概形を見ておこう(図14・ 4)。赤道面(z = 0)での有効ポテンシャ ルは、

$$\phi_{\text{eff}}|_{z=0} = -\frac{GM}{r} - \frac{\Omega}{2}r^2$$
 (14.31)

である。重力ポテンシャル(右辺第1項)は、 図に示したように、中心で深く遠方で浅くな る。一方、遠心力ポテンシャル(右辺第2項) は、逆に、中心で0だが遠方で深くなる。そ の結果、両方を合わせた有効ポテンシャルは、 ある半径 r_{max} で極大値 ϕ_{max} を持つことにな る。この半径は、 $\partial \phi_{eff} / \partial r$ となる半径であり、 実は、先に出てきたブレークアップを起こす 半径に他ならない。

物理的なイメージとしては、回転星の大気 は、重力と遠心力でできた有効ポテンシャル という容器の中に溜まっているのだが、その 量が増えてくると半径が大きくなり、ついに は容器の縁(有効ポテンシャルの極大値)を 越えて溢れ出すのである。

問 14.3 有効ポテンシャルを用いると、静水圧平衡の式が、

ρ

$$\frac{1}{\rho}\frac{\partial P}{\partial r} = -\frac{\partial \phi_{\text{eff}}}{\partial r} \qquad (14.32)$$

$$\frac{\partial T}{\partial z} = -\frac{\partial \varphi \, em}{\partial z} \tag{14.33}$$

と表せることを示せ。

問 14.4 密度分布が(14.30)式のようになることを 導け。

問14.5 圧力分布を求めよ。

問 14.6 ブレークアップのときの有効ポテンシャル、すなわち赤道面における有効ポテンシャルの極大値 ϕ_{\max} を求めよ。

14.2.3 無次元化

等密度面や等圧面は等ポテンシャル面に平 行なので等ポテンシャル面の形がわかれば、 (14.30)式から回転星の大気構造がわかるこ とになる。しかし有効ポテンシャルの(14.26) 式は、このままでは、中心核の質量 M や自 転角速度 Ω などが入っていて扱いにくい。質 量や角速度をいちいち与えなければならない し、また出てきた結果は他の質量や角速度を もつ場合には使えないので汎用性に乏しい。 さらに非常に大きな値や小さな値を計算しな ければならない。そこで、今の場合、具体的 には以下のような無次元化を行おう。

まず長さの単位としては、回転星のサイズ を選びたい。その一つとして、回転星の赤道半 径 r_e があるが、赤道半径は(ガスの量によっ て)変化するので適当ではない。それよりも、 回転星の質量と自転角速度を与えれば決まる ブレークアップの半径 r_{\max} [= $(GM/\Omega^2)^{1/3}$] が適当である。またポテンシャルの単位とし ては、(14.26)の第2項を見ると、 $\Omega^2 r_{\max}^2$ ぐ らいを取るのがわかりやすいだろう。

以上の考察より、無次元化した変数として、

$$\hat{r} = \frac{r}{r_{\max}} = \frac{r}{(GM/\Omega^2)^{1/3}}$$
 (14.34)

$$\hat{z} = \frac{z}{r_{\max}} = \frac{r}{(GM/\Omega^2)^{1/3}}$$
 (14.35)

$$\hat{\phi}_{\text{eff}} = \frac{\phi_{\text{eff}}}{\Omega^2 r_{\text{max}}^2} = \frac{\phi_{\text{eff}}}{(GM\Omega)^{2/3}} \qquad (14.36)$$

を選ぼう。これらを(14.26)式に代入して整 理すると、

$$\hat{\phi}_{\text{eff}} = -\frac{1}{\sqrt{\hat{r}^2 + \hat{z}^2}} - \frac{\hat{r}^2}{2} \qquad (14.37)$$

というすっきりした式に落ち着く。この(14.37) 式が無次元化した回転星大気の有効ポテンシ ャルである。

問 14.7 無次元化した量で、ブレークアップのときの赤道半径を \hat{r}_{\max} 、極半径を \hat{z}_{\max} 、そして表面での有効ポテンシャルを $\hat{\phi}_{\max}$ とする。このとき、

$$\hat{r}_{\max} = 1$$

 $\hat{\phi}_{\max} = -\frac{3}{6}$

となることを確かめよ。また表面での有効ポテンシャ ルの値が等しいことを使って、

$$\hat{z}_{\max} = \frac{2}{3}$$

となることを求めよ。

この問からわかるように、ブレークアップ するときの偏平率 ϵ は、

$$\epsilon = \frac{r_{\max} - z_{\max}}{r_{\max}} = \frac{1}{3}$$
 (14.38)

である。これは質量や自転角速度によらない。

いろいろなポテンシャルの値を与えて等ポ テンシャル面を描くと、図14・5のように なる。

図14.5 無次元化した等ポテンシャル面

問 14.8 無次元化した等ポテンシャル面を描いて みよ。

問14.9 無次元化の方法は一意的ではない。例えば、 ポテンシャルの単位として、*GM*/*r*_{max} を選んだらど うなるだろうか? 14.2.4 応用例

以上の回転星の大気モデルを木星に適用してみよう。

木星の赤道半径を $R_{\rm e}$ 、質量を $M_{\rm J}$ 、自転角 速度を $\Omega_{\rm J}$ ($= 2\pi/P_{\rm J}$; $P_{\rm J}$ は自転周期)とす る。最初にあげた具体的数値を用いると、ま ず無次元化した赤道半径 $\hat{r}_{\rm e}$ は、

$$\hat{r}_{e} = \frac{R_{e}}{(GM_{J}/\Omega_{J}^{2})^{1/3}} \\ = \frac{R_{e}}{(GM_{J}P_{J}^{2}/4\pi^{2})^{1/3}} \\ = 0.44856$$
(14.39)

となる(自転周期は、 $P_{\rm J} = 9^{\rm h} 50^{\rm m} 30^{\rm s}$ を用いた)。またそこでの有効ポテンシャル $\hat{\phi}_{\rm e}$ は、

$$\hat{\phi}_{\rm e} = -\frac{1}{\hat{r}_{\rm e}} - \frac{\hat{r}_{\rm e}^2}{2} = -2.330$$
 (14.40)

になる。

このとき、モデル回転星の無次元化した極 半径 \hat{z}_{p} は、

$$\hat{z}_{\rm p} = -\frac{1}{\hat{\phi}_{\rm e}} = 0.42919$$
 (14.41)

である。したがって、モデル回転星の偏平率 ϵ は、

$$\epsilon = \frac{r_{\rm e} - z_{\rm p}}{r_{\rm e}} = 0.0432$$
 (14.42)

になる。一方、木星の観測された偏平率は、 0.065だった。非常に荒い議論としてはいい 一致を見たというべきだろう。

問 14.10 土星の場合について、同じ作業をしてみ よ。

コラム:

15 近接連星の形状

2つの星がお互いのまわりを回りあってい る連星の中でも、とくに、2つの星が極めて接 近して公転している系を、近接連星(close binary)あるいは近接連星系(close binary system)という(図15・1)。ここでは、その ような連星の形を考えてみよう。

図 15.1 近接連星のイメージ

15.1 近接連星の重力圏

近接連星では、潮汐力や質量交換・エネル ギー交換などの相互作用が重要となり、2つ の星は物理的に影響を及ぼしあう。そのため、 星の構造や進化などが単独星の場合と大きく 異なってくる。また相互作用の結果、さまざ まな活動も引き起こされる。

相互作用の例として、たとえば、もともと 2つの星が楕円軌道上を公転していたとして も、潮汐力によって角運動量が失われ、次第 に円軌道になってしまう。また同じ原因から、 2つの星は、地球と月のように、つねに同じ 面を相手に向けるようになる(自転同期とい う)。さらに潮汐作用の結果、"丸い"はずの 星が、"卵形"に歪んでしまう。これらの結果、 "卵形"をした2つの星が、尖った部分を相手 に向けながら、お互いのまわりを円運動して いるような星系ができあがる。

近接連星のまわりの重力圏は、瓢箪型の構造をしていて、ロッシュ・ローブ(Roche lobe) と呼ばれている(図15・1)。すなわちそれ ぞれの星の近くではそれぞれの星の重力圏が 卓越しているが、2つの星の間にそれぞれの星 の重力圏が接する宙点(L_1)がある-(第1) ラグランジュ点(Lagrange point)と呼ぶ。そ の結果、全体の重力圏は、 L_1 にくびれを持っ た瓢箪型のものになる。それぞれの星の重力 圏は、お互いの相互作用の結果、卵型になっ ている。質量の大きな星の方が重力圏のサイ ズは大きい。

星の大きさと重力圏ロッシュ・ローブの関係 によって、近接連星は、分離型、半分離型そ して接触型の3つのタイプにわかれる(図1 5・2)。どちらの星もロッシュ・ロープより 小さいものは、2つの星が接していないため に分離型(detached system)と呼ばれる。片 方の星がロッシュ・ローブを満たしているもの は、半分離型(semi-detatched)と呼ばれる。 両方の星がロッシュ・ローブを満たしている と、星同士が接するので接触型(contact)と 呼ばれる。

15.2 ロッシュポテンシャル

ここでロッシュポテンシャルというものを 導入して、近接連星の構造(平衡形状)を考 えてみよう。

質量 M_1 の天体(星1)と質量 M_2 の天体 (星2)が、共通重心 O のまわりを角速度 Ω で公転しているとしよう(図15・3)。簡単 のために公転軌道は円軌道だとする。ポテン シャルを考える前に、近傍の空間に置いた質 量 m ($\ll M_1, M_2$ とする)の質点いわゆるテ スト粒子にどんな力が働いているかを考えて みよう。

図 15.3 近接連星の軌道

星1も星2も動いているので、慣性系から みると周囲の重力場は時々刻々と変化してい る。そこで問題を扱いやすくするために、連 星系の公転と一緒に回転する座標系に乗って 考えよう(図15・4)。公転と同期した座 標系では2つの星の位置は変化しない。ただ し回転系に乗ったために、テスト粒子には、2 つの星からの重力以外に、非慣性力として遠 心力が働くことになる。

図 15.4 近接連星の公転と共に回転す る重心座標系

15.2.1 力のベクトル表示

図に示したように、星1、星2の中心から テスト粒子への位置ベクトルを r₁、r₂ とし、 連星系の重心(公転中心)からテスト粒子へ の位置ベクトルを r とすると、テスト粒子に 働く力 F は、

$$\mathbf{F} = -\frac{GM_1m}{r_1^2}\frac{\mathbf{r}_1}{r_1} - \frac{GM_2m}{r_2^2}\frac{\mathbf{r}_2}{r_2} + mr\Omega^2\frac{\mathbf{r}}{r}$$
(15.1)

と表すことができる。この(15.1)式の右辺 の第1項は、星1から働く重力で、星1から の距離の自乗に反比例し、星1の中心方向を 向いている。第2項は同じく星2からの重力 である。また第3項は、遠心力を表し、回転 中心0から外向きである。

連星間距離を *a* として、一般化されたケプ ラーの第3法則、

$$\Omega^2 = \frac{G(M_1 + M_2)}{a^3} \tag{15.2}$$

を用いれば、(15.1)式から公転の角速度 Ω を 消去して、

$$\boldsymbol{F} = -\frac{GM_1m}{r_1^2} \frac{\boldsymbol{r}_1}{r_1} - \frac{GM_2m}{r_2^2} \frac{\boldsymbol{r}_2}{r_2} + \frac{G(M_1 + M_2)m}{a^3} r \frac{\boldsymbol{r}}{r}$$
(15.3)

と表せる。

問 15.1 単位質量当りの力、すなわち加速度ではどうなるか?

15.2.2 力の成分表示

以上のベクトル形式で書かれた式を成分で 表示するために、連星系の軌道面内で図15・ 4のように、系の重心 〇を原点とし2つの星 を結ぶ線を *x* 軸とするような直角座標系を取 ろう。

そうすると (x, y) にあるテスト粒子に働く 力の成分 F_x 、 F_y は、それぞれ、

$$F_{x} = -\frac{GM_{1}m}{r_{1}^{2}}\frac{x+a_{1}}{r_{1}} - \frac{GM_{2}m}{r_{2}^{2}}\frac{x-a_{2}}{r_{2}} + \frac{G(M_{1}+M_{2})}{a^{3}}$$

$$F_{y} = -\frac{GM_{1}m}{r_{1}^{2}}\frac{y}{r_{1}} - \frac{GM_{2}m}{r_{2}^{2}}\frac{y}{r_{2}} + \frac{G(M_{1}+M_{2})m}{a^{3}}y$$
(15.5)

となる。ただしここで a_1 、 a_2 は全系の重心 からの星 1、星 2 のそれぞれの重心までの距 離である ($a = a_1 + a_2$)。これらは、質量比 (mass ratio)を、

$$f = \frac{M_2}{M_1}$$
(15.6)

とおくと、重心の定義から、

$$a_1 = \frac{aM_2}{M_1 + M_2} = \frac{af}{1+f}$$
(15.7)

$$a_2 = \frac{aM_1}{M_1 + M_2} = \frac{a}{1+f} \tag{15.8}$$

$$r = \sqrt{x^2 + y^2}$$
 (15.9)

$$r_1 = \sqrt{(x+a_1)^2 + y^2}$$
 (15.10)

$$r_2 = \sqrt{(x-a_2)^2 + y^2}$$
 (15.11)

である。

問 15.2 テスト 粒子に働く力の成分 F_x 、 F_y を導け。

15.2.3 ロッシュポテンシャル

さて、ここでいよいよ、上の力の場を与え るようなポテンシャル 型 を求めよう。ポテン シャルの勾配が(単位質量当りの)力である ことから、力の大きさをテスト粒子の質量で 割って単位質量当りの力(加速度)に直し、力 とポテンシャルの関係として、

$$\frac{\boldsymbol{F}}{m} = -\boldsymbol{\nabla}\Psi \qquad (15.12)$$

が、あるいは成分表示で、

$$\frac{F_x}{m} = -\frac{\partial\Psi}{\partial x} \tag{15.13}$$

$$\frac{F_y}{m} = -\frac{\partial\Psi}{\partial y} \tag{15.14}$$

と表せる。これらの関係から、ポテンシャル Ψ は、

$$\Psi = -\frac{GM_1}{r_1} - \frac{GM_2}{r_2} - \frac{\Omega^2}{2}r^2$$
$$= -\frac{GM_1}{r_1} - \frac{GM_2}{r_2} - \frac{G(M_1 + M_2)}{2a^3}r^2(15.15)$$

となる。

ポテンシャル Ψ の式の右辺の第1項と第2 項はそれぞれ星1、星2の重力ポテンシャルで あり、第3項は遠心力のポテンシャルを表す。 この Ψ は一般には有効ポテンシャル(effective potential)と呼ばれるものだが、今の場合は とくに、このようなポテンシャルを最初に研 問15.3 (15.15)式を(15.12)式に代入して、(15.6) 式が得られることを確かめよ。

15.2.4 力とポテンシャルの無次元化

上のポテンシャルの形に沿って物質は分布 する。すなわちポテンシャルの等しいところ -等ポテンシャル面(equi-potential surface) -では、物質の密度も等しい。このような等ポ テンシャル面という概念は、地図などに出て くる等高線とよく似た概念である。

したがって連星の形状を求めるためには、 等ポテンシャル面を求めればいいのだが、ポ テンシャルを表す(15.15)式は、質量や万有 引力定数などを含んでおり、いちいちそれら を与えなければならない。しかし、単位をう まく選ぶことにより、それらが見かけ上現れ ないようにすることができる(無次元化/規 格化)。

長さの単位として連星間距離 a を、ポテン シャルの単位として *GM*/a を取ろう。そして 無次元化した長さとして、

$$\hat{x} = \frac{x}{a}, \hat{y} = \frac{y}{a}, \hat{r} = \frac{r}{a}, \hat{r}_1 = \frac{r_1}{a}, \hat{r}_2 = \frac{r_2}{a}$$
(15.16)

を導入すると、

$$\hat{r} = \sqrt{\hat{x}^2 + \hat{y}^2}$$
 (15.17)

$$\hat{r}_1 = \sqrt{(\hat{x} + \frac{f}{1+f})^2 + \hat{y}^2}$$
 (15.18)

$$\hat{r}_2 = \sqrt{(\hat{x} - \frac{1}{1+f})^2 + \hat{y}^2}$$
 (15.19)

となる。これらを使うと、最終的に、無次元 化したポテンシャル Φ は、

$$\Phi = \frac{\Psi}{GMm/a} = -\frac{1}{\hat{r}_1} - \frac{f}{\hat{r}_2} - \frac{1+f}{2}\hat{r}^2 \quad (15.20)$$

と表せる。

問15.4 (15.20)式を導け。

問 15.5 まず質量比 $f \ge 1 \ge 0$ 、x = 0)の 上でのロッシュポテンシャルをグラフに表せ。

問 15.6 グラフから、ラグランジュ点すなわちポテ ンシャルの極値を求めてみよ。x軸上には L_1 から L_3 まで 3 つある。

問 15.7 質量比 *f* をいろいろ変えて同じ作業を行ってみよ。

問 15.8 いろいろな質量比 f に対して、ロッシュポ テンシャルの全体を描いてみよ。また x 軸上以外のラ グランジュ点 L_4 と L_5 を全体図から求めてみよ。

表 15.1質量比 f の例天体名質量比 fロシュワールド1うみへび座 EX 星0.23地球 - 月系0.0123太陽 - 木星系0.00095479

コラム:スペースコロニーとラグランジュ点

図 15.5 連星のロッシュポテンシャル

このように無次元化すると、連星系での有 効ポテンシャル(ロッシュポテンシャル)は、 結局、質量比 *f* だけをパラメータとして決ま る(図15・5)

2つの星の周辺(公転軌道面内)でポテン シャル Φ が一定の線(等ポテンシャル面)を 描くと図のようになる。等ポテンシャル面は、 星1あるいは星2のごく近傍ではほぼ円状(実 際は球状)であり、またずっと遠方でもほぼ 球状になる。またとくに、2つの星を包む横 8の字形の等ポテンシャル面を内部臨界ロッ シュ・ローブと呼び、もう少し外側の瓢箪形の ものを外部臨界ロッシュ・ローブと呼ぶ。さら に、ポテンシャルの極値(すべての力が釣り 合っている場所)が5つあり、ラグランジュ点 (Lagrange point)と名づけられている(図の L₁から L₅ まで)。

さてポテンシャルの勾配が力なので、力は 等ポテンシャル面に垂直に働き、等ポテンシャ ル面に沿った方向には働かない。したがって もしガスがテスト粒子の集まりだとすると、 ガスの分布が等ポテンシャル面から歪んだ場 合、それを等ポテンシャル面にならすような 力:潮汐力が働く。その結果、ガスの分布は再 び等ポテンシャル面に沿ったものになる。実 際の星ではもっと複雑ではあるが、それでも 近接連星系において、それぞれの星の外層は、 大体ロッシュポテンシャルに沿ったものになっ

16 星の内部構造

天体の形状や構造を支配する主な力は、物 質の及ぼす重力、回転運動に伴う遠心力、そし てガスの圧力、電磁力、輻射の力などである。

そのうちの重力に関して、いままでの章で は、外場として与えてきた。すなわち地球重 力場や中心天体の重力場などを仮定し、した がって重力/重力加速度を与えた上で、その 中での天体の構造を考えてきた。地球の大気 や恒星の希薄な大気そして中心天体のまわり の降着円盤など、ガス自身の質量が無視でき る範囲内では、こうした重力場を外場として 与える近似は悪くない。

しかし、たとえば、星の内部の構造のよう に、ガス自身が作る重力場の中での天体の形 状を考えるときには、ガスの分布が重力場を決 め、その重力場がガスの分布を決めるので、ガ スの分布と重力場とを同時にかつ無矛盾に解 かなければならない(self-consistent という)

このような、ガス自分自身の重力 - 自己重 力(self-gravity)と呼ぶ - を考慮しながら天 体の形状を決めるのは、一般には大変難しく なる。ここでは、比較的容易に解ける場合と して、球対称天体の場合、いわば星の内部の 構造を考えてみよう(図16・1)。

ともいわれる。星にも、主にその進化の段階に 応じていろいろなタイプがある(§20参照)。 ざっと並べてみると、質量が小さすぎて核融合 の火を灯せなかった褐色矮星(brown dwarf) 生まれたばかりでまだ核融合を起こしていな い原始星 (protostar)、水素がヘリウムに変 換する核融合反応を中心部で持続させながら 安定して輝いている主系列星(main sequence star) 大気が不安定になって明るさが変動す る脈動変光星(pulsating variable) 核融合反 応が安定でなくなり膨張して赤くなった赤色 巨星(red giant)、恒星進化の末期に外層大 気が飛散して高密度の中心核だけが残った白 色矮星(white dwarf)、同じく進化の末期に 中心の核反応が暴走して星全体が大爆発する 超新星(supernova) 超新星爆発の後に残さ れる中性子星(neutron star)やブラックホー ル(black hole) などなど。ここでは、ガス でできた星の内部構造に注目する。

観測的に測定することのできる星の基本的 な物理量は、

表 16.1	観測量
質量	M
表面温度	T
半径	R
光度	L

などである(ここでは簡単のために化学組成 や回転などの効果は考えない)。

これらの物理量は、観測的には、おおむね、

- $10^{-1}M_{\odot} \leq M \leq 10^2 M_{\odot}$ (16.1)
- $10^{-2}R_{\odot} \leq R \leq 10^{3}R_{\odot}$ (16.2)
 - $10^3 \text{K} \le T \le 10^5 \text{K}$ (16.3)
- $10^{-6}L_{\odot} \leq L \leq 10^{6}L_{\odot}$ (16.4)

の範囲にある。ただしここで、

- $M_{\odot} = 1.99 \times 10^{33} \text{ g}$ (16.5)
- $R_{\odot} = 6.96 \times 10^{10} \text{ cm}$ (16.6)
- $T_{\odot} = 5780 \text{ K}$ (16.7)
- $L_{\odot} = 3.96 \times 10^{33} \text{ erg s}^{-1}$ (16.8)

図 16.1 太陽の内部構造

16.1 主系列星

夜空に輝く星(star)は、宇宙空間のガスが 自分自身の重力で引き寄せ合って球状に集ま り、内部でエネルギーを発生して自ら光って いる天体である。しばしば恒星(fixed star) は太陽(⊙)に関する量である。

これらの4つの物理量は独立ではない。まず、光度 L と半径 R、表面温度 T の間には、ステファン・ボルツマンの法則(Stefan-Boltzmann's law):

$$L = 4\pi R^2 \sigma T^4 \tag{16.9}$$

が成り立つ。さらに、いわゆる主系列星につ いては、基本量の間に成り立つ関係として、

- 温度光度関係:スペクトル型(表面温度
 T) 絶対等級(光度L)
- 質量光度関係:質量 M 光度 L

の2つが知られている。前者の温度光度関係 は、ふつうはHR図(Hertzsprung-Russell図) と呼ばれるが、表面温度が高温の星ほど光度 が大きいという関係である(図16・2)。ま た後者の質量光度関係は、質量が大きな星ほ ど光度が大きいという関係だ(図16・3)。 したがって、主系列星に関しては、基本的な 物理量のうち、本当に独立なものは、たった ーつ、たとえば、

質量 M

だけである。

図 16.2 主系列星の温度光度関係(HR 図)。主系列星はおおむね太い実線上に 並ぶ。数値は太陽質量を単位とした星の 質量。また破線は半径が一定の関係線。

図 16.3 主系列星の質量光度関係。主 系列星はおおむね太い実線上に並ぶ。

言い替えれば、主系列星では、質量 M だ けをパラメータとして、表面温度 T や半径 R や光度 L などの基本的な物理量、その内部の 構造、寿命などなどがすべて一意的に決って いる。主系列星のこのような性質を定めてい る基礎的な法則は、力学的な釣り合いとエネ ルギーの釣り合いである。

表 16.2 主系列星の物理量					
質量	光度	表面温度	半径	中心密度	
M/M_{\odot}	L/L_{\odot}	Κ	R/R_{\odot}	$[\mathrm{g} \mathrm{cm}^{-3}]$	
100	1.2×10^6	52000	14.00	1.6	
50	$3.2 imes10^5$	44000	9.20	2.5	
20	$3.7 imes10^4$	34000	5.70	4.6	
10	$4.7 imes 10^3$	24000	3.80	9.0	
5	$4.5 imes 10^2$	17000	2.60	21.0	
2	$1.5 imes 10^2$	9200	1.50	66.0	
1	$7.1 imes 10^{-1}$	5400	0.98	87.0	
0.7	1.4×10^{-1}	4500	0.62	86.0	
0.5	$3.7 imes10^{-2}$	3800	0.44	85.0	

16.2 エムデン方程式

星間雲から原始星へ重力収縮していく星の 形成段階では、重力が圧力を卓越している。 しかし重力収縮がストップし、いったん星と して形をなした後では、星の内部の任意の半 径において、星を収縮させようとする重力と 膨張させようとする圧力勾配力は釣り合って いる。この重力と圧力勾配力の釣り合った状 態を力学平衡 (dynamical equilibrium)と呼んでいる。

16.2.1 静水圧平衡

星の内部構造は、星の中心に対して球対称 (sphercally symmetric)だとし、また時間的 に変化しない(steady)とする。したがって、 密度や圧力などの物理量は、中心からの半径 rのみの関数である(図16・4)。図のよう に、星の内部の半径rにおける密度を ρ 、圧 力をP、半径rより内側の質量を M_r としよ う。星の表面(r = R)では、 $\rho \sim 0$ 、 $P \sim 0$ 、 $M_r = M$ である。

図 16.4 球対称性。球対称星の内部の 物理量は半径 r だけの関数になる。

図16.5 星の内部の静水圧平衡。

このとき、星の内部の半径 r の場所に、厚 さ dr で面積 A の薄く微小な仮想的円柱(微 小体積要素)を考え(図16・5) この微小 円柱に働く半径方向の力の釣り合いを調べて みよう(力の方向は、半径方向外向きを + と する)。図のように、円柱の下面の圧力を P、 上面の圧力を P + dP (外側ほど圧力は小さ くなるので dP < 0)とし、円柱内のガスの 密度 ρ は(円柱が薄いので)一定とする。

この微小円柱に対しては以下のような力が 働く:

上面での全圧力	-(P+dP)A
下面での全圧力	+PA
重力	$-\frac{GM_r}{r^2} ho Adr$
釣り合い	$-AdP - \frac{GM_r}{r^2}\rho Adr = 0$

あるいは、力学的な釣り合いの式として、

$$-\frac{GM_r}{r^2} - \frac{1}{\rho}\frac{dP}{dr} = 0$$
 (16.10)

が得られる。この(16.10)式の第1項は、中 心へ向かう単位質量当りの重力(gravitational force)であり、第2項は圧力勾配力(pressure gradient force)である。これは星の場合の静 水圧平衡(hydrostatic equilibrium)である。

問 16.1 星の中心(r = 0)で M_r はいくらか? また圧力勾配力はいくらか?

16.2.2 連続の式

つぎに、半径 *r* より内側に含まれる質量 *M_r* を決める方程式を立てよう。そのために、半 径 *r* と半径 *r* + *dr* に挟まれた球殻を考える (図16・6)

球殻は十分薄いとして、その内部では密度 ρ は一定としよう。球殻の体積は、 $4\pi r^2 dr$ な ので、 M_r の増加分 dM_r は、

$$dM_r = \rho 4\pi r^2 dr$$

となり、あるいは、微分形に変形して、

$$\frac{dM_r}{dr} = 4\pi r^2 \rho \qquad (16.11)$$

が得られる。この(16.11)式がガスの分布と 重力場を関係づける式で、連続の式(continuity equation)と呼ばれる。

16.2.3 状態方程式

変数が $3 \operatorname{O}(\rho, P, M_r)$ あるので、方程式 系を解くためには、もう一つ式が必要である。 それは密度 ρ と圧力 P の間に成り立つ関係 式、いわゆる状態方程式(equation of state) である。ここでは、 $\rho \ge P$ の間に、ポリトロ ピック関係式(polytropic relation):

$$P = K\rho^{\gamma}$$
; K と γ は定数 (16.12)

が成り立つとする。

上の(16.10) - (16.12)式が、力学平衡/ 静水圧平衡の成り立っている星 - すなわち自 己重力ガス球(selfgravitating gas sphere)の 構造を支配する方程式系である(独立変数 r; 従属変数 ρ 、P、 M_r)。ただし、エネルギーの 発生や輸送の問題は考えていない。

問16.2 すべての質量が中心に集中している場合(中 心集中星)上の(16.10)-(16.12)式は、太陽大気 の場合の方程式に帰着することを確かめよ。

16.2.4 ガス球の構造:エムデン方程式

構成しているガスを中心へ引き寄せようと する自分自身の重力と、中心から外へ向かう 圧力勾配力の釣り合った、力学平衡にあるガ ス球 - 自己重力ガス球 - の構造を具体的に解 いてみよう。

手順としては、3本の基礎方程式から変数 を消去して1本の微分方程式にまとめ、つぎ に変数変換をして得られた微分方程式を無次 元化する。

まず基礎方程式の(16.10)式を、

$$\frac{r^2}{\rho}\frac{dP}{dr} = -GM_r \tag{16.13}$$

と変形して、両辺をrで微分し、(16.11)式 を代入して M_r を消去すると、

$$\frac{d}{dr}\left(\frac{r^2}{\rho}\frac{dP}{dr}\right) = -4\pi G r^2 \rho \qquad (16.14)$$

となる。さらに(16.12)式から *P* を消去す ると、*ρ* に関する 2 階の微分方程式:

$$\frac{d}{dr} \left[\frac{r^2}{\rho} \frac{d}{dr} \left(K \rho^{\gamma} \right) \right] = -4\pi G r^2 \rho \qquad (16.15)$$

が得られる。

問16.3 (16.15)式を導け。

中心の境界条件(たとえばr = 0で $\rho = \rho_c$ 、 $d\rho/dr = 0$)を与えてこの(16.15)式を解け ば、ガス球の内部構造は求まるが、質量や半径 の異なるガス球の構造を解くたびに、中心密 度などを与えて解き直さなければならない。 そこで普通は、以下のように変数変換して、 (16.15)式を無次元化する。

まず、変数変換の準備として、

$$\gamma = 1 + 1/N$$
 (16.16)

として、(16.15)式を、

$$\frac{d}{dr}\left[\frac{r^2}{\rho}\frac{d}{dr}\left(K\rho^{1+1/N}\right)\right] = -4\pi G r^2 \rho \quad (16.17)$$

と表す。さらに、

$$r = \sqrt{\frac{(N+1)P_{\rm c}}{4\pi G\rho_{\rm c}^2}} \xi = \sqrt{\frac{(N+1)K\rho_{\rm c}^{1+1/N}}{4\pi G\rho_{\rm c}^2}} \xi$$
(16.18)
$$\rho = \rho_{\rm c} D^N$$
(16.19)

で定義される、無次元化した半径 ξ と無次元 化した密度 *D* を用いると、(16.17)式は、最 終的に、

$$\frac{1}{\xi^2} \frac{d}{d\xi} \left(\xi^2 \frac{dD}{d\xi} \right) = -D^N \tag{16.20}$$

<天体の流体力学 HYDRO6 >

という形に整理される。

この自己重力ガス球の構造を表す無次元化 した方程式を、エムデン方程式(Emden equation)とか、レーン - エムデン方程式(Lane-Emden equation)と呼ぶ。

エムデン方程式で残されたパラメータは、 N(あるいは γ)である。またこの(16.20) 式を解くための境界条件は、

$$\xi = 0 \ \mathcal{C} \ D = 1 \ (r = 0 \ \mathcal{C} \ \rho = \rho_{c} \)$$
(16.21)
$$\xi = 0 \ \mathcal{C} \ \frac{dD}{d\xi} = 0 \ (r = 0 \ \mathcal{C} \ \frac{dP}{dr} = 0 \)$$
(16.22)

である。

パラメータ N(あるいは γ)を与えて上の 境界条件のもとで(16.20)式を解けば、ガス 球の内部構造が求まる。

問16.4 (16.17)式を無次元化して、エムデン方程式(16.20)を導出せよ。

16.2.5 エムデン方程式の解析解

パラメータ *N* が 0、1、5 の場合には、エム デン方程式は解析解を持つ。

(i) N = 0 ($\gamma = \infty$)のときの解 D_0 :

$$D_0 = 1 - \frac{1}{6}\xi^2 \tag{16.23}$$

(ii) N = 1 ($\gamma = 2$)のときの解 D_1 :

$$D_1 = \frac{\sin\xi}{\xi} \tag{16.24}$$

(iii) N = 5 ($\gamma = 6/5$)のときの解 D_5 :

$$D_5 = \frac{1}{\sqrt{1 + \frac{\xi^2}{3}}} \tag{16.25}$$

問 16.5 エムデン方程式(16.20)で N = 0 とした 式を、境界条件を適用しながら積分して、(16.23)式 を求めよ。 問 **16.6** エムデン方程式(16.20)に(16.24)式を 代入して、それらが確かにエムデン方程式の解である ことを確かめよ。

問 **16.7** エムデン方程式(16.20)に(16.25)式を 代入して、それらが確かにエムデン方程式の解である ことを確かめよ。

問16.8 これらの解析解のグラフを描いてみよ(図 16・7)。

図16.7 エムデン方程式の解析解。

16.2.6 エムデン方程式の数値解

ガス球が水素原子からできているとすると、 水素原子は単原子理想気体なので、その比熱 比は 5/3 である。さらに断熱状態だとすると、 ポリトロープ指数 γ は、ガスの比熱比に近い。 すなわち、

 $\gamma = 5/3$ あるいは N = 3/2

である。実際、主系列星の内部構造は、*N* = 3/2 のエムデン解でよく近似できることがわかっている。

このような一般の N の場合には、エムデン 方程式は数値的に解かなければならない。こ こではオイラー法を用いて、エムデン方程式 を数値的に解いてみよう。

まず、 $E = dD/d\xi$ という変数を導入して、 エムデン方程式を連立方程式にする。

$$\frac{dD}{d\xi} = E \tag{16.26}$$

$$\frac{dE}{d\xi} = -\frac{2}{\xi}E - D^N \qquad (16.27)$$

境界条件は、

 $\xi = 0$ \mathcal{C} D = 1, E = 0 (16.28)

である。

中心から *dξ* の刻みで外向きに 0、1、2、、、 *i*、*i* + 1、、、と番号を振っていくと、中心の 値は、

$$\xi_0 = 0$$

 $D_0 = 1$
 $E_0 = 0$ (16.29)

である。さらに、 i 番目の値を、

$$\begin{aligned}
\xi_i &= id\xi \\
D_i \\
E_i
\end{aligned} (16.30)$$

とすると、i+1番目の値は、

$$\xi_{i+1} = (i+1)d\xi D_{i+1} = D_i + dD = D_i + E_i d\xi E_{i+1} = E_i + dE = E_i + \left(-\frac{2}{\xi_i}E_i - D_i \right) 34\xi$$

で与えられる(図16・8)。中心から外へ向 けて順番に i 番目の値を計算していくことに よって、数値的に構造を求めることができる。

図16.8 エムデン方程式の数値解法。

問16.9 (16.26)式と(16.27)式を導け。

問 16.10 差分化した式を導け。

問 16.11 この方法で、N = 3/2の場合の解を計算 してみよ。また解析解なども含め、他の場合も計算し てみよ。

問 16.12 エムデン解を使って星の質量を表すと、 (16.18)式を $r = \alpha \xi$ と置いて、

$$M = \int_0^R 4\pi \rho r^2 dr$$

= $-4\pi \alpha^3 \rho_c \int_0^{\xi_0} \frac{d}{d\xi} \left(\xi^2 \frac{dD^N}{d\xi}\right) d\xi$
= $-4\pi \alpha^3 \rho_c \left[\xi^2 \frac{dD^N}{d\xi}\right]_{\xi=\xi_N}$
= $\left[\frac{1}{4\pi G^3} \frac{P_c^3}{\rho_c^4}\right]^{1/2} \left[-(N+1)^{1/3} \left(\xi^2 \frac{dD^N}{d\xi}(\xi_N^3)^2\right)\right]$

のようになることを示せ。 なお最後の行の[]内の値は、

> $\gamma = 5/3$ のとき [] = 10.73 $\gamma = 4/3$ のとき [] = 16.15

である。

コラム:規格化、無次元化

等密度面や等圧面は等ポテンシャル面に平 行なので等ポテンシャル面の形がわかれば、 (14.30)式から回転星の大気構造がわかるこ とになる。しかし有効ポテンシャルの(14.26) 式は、このままでは、中心核の質量 M や自 転角速度 Ω などが入っていて扱いにくい。質 量や角速度をいちいち与えなければならない し、また出てきた結果は他の質量や角速度を もつ場合には使えないので汎用性に乏しい。 さらに非常に大きな値や小さな値を計算しな ければならない。

そこで、しばしば、長さや時間の単位をうま く選んで物理量の規格化(normalization)を 行う。あるいは物理変数を無次元にするので、 無次元化(non-dimensionalize)ともいう。無 次元化/規格化は、扱う数値が1のオーダー になるように行うのが普通である。