

Fig. 7.6 Mach numbers for several parameters in figure 7.5. From top-left to bottom-right, parameters are (ℓ, E) = (1.200, 1.040), (1.500, 1.040), (1.200, 1.0050), (1.460, 1.005), (1.500, 1.005), (1.520, 1.005), (1.670, 1.005), (1.670, 1.005), (1.800, 1.005), (1.710, 0.970), (1.800, 0.970). For sufficiently large E, the gas is pushed inward by passing through the innermost critical points. For the values of E smaller than unity, the gas is gravitationally bound. For intermediate values of E, there exist many variety of transonic solutions. (After Fukue 1987)

	放射不良円盤 温度分布	
 粘 逃 に 	;性加熱で解放された重力エネルギーは、ほとんど放射で ٤げないので、円盤ガスの内部エネルギー(熱エネルギー) こなったまま。	
• ブ 単 ス	ラックホールが作る重力勾配は中心ほど大きくなるので、 位体積あたりのエネルギー解放も中心ほど大きく、円盤ガ の温度も中心に近づくほど高くなる。	
• ガ ギ か	スの内部エネルギー(熱エネルギー)が陽子の重力エネル ーと等しいと仮定すると、放射不良円盤の温度71は、中心 いらの距離rの関数として、おおざっぱに、	
	$T = 10^{12} r_0^{-1} \text{ K}$	
のホ	ようになる。ここで、r ₀ はシュハルツシルト半径(フラック ニールの半径)を単位とした中心からの距離。	
2010	V10/12 Black-Hole Accretion Disks	

	放射不良円盤 適用天体	
・ ナ タ 瓦	トラヤン(R. Narayan)らが1995年に、いて座Aス マーのスペクトルを放射不良円盤で説明することに 成功して、放射不良円盤の重要性が再認識される ようになった。(先駆的研究:一丸1977年)	
● 注 の こ	5動銀河の中には、いくつかの電波銀河や、低光 麦活動銀河核LLAGNなど、活動性は示すものの引 常に暗いタイプの活動銀河がある。また、われわれ D銀河系中心である、いて座Aスターも非常に暗い これら、光度は非常に小さいものの、一方で高エネ	₽ o
ノ 身	レギー領域での放射も示す活動銀河中心核は、放 対不良降着円盤で説明できそうだ。	
2010	0/10/12 Black-Hole Accretion Disks 13	

ADAFモデルのまとめ				
Table 9.1 Standard and Advection-Dominated Disks.				
Model	standard disk	optically thin ADAF		
Energy	$Q_{\text{vis}}^+ = Q_{\text{rad}}^-$	$Q_{\rm vis}^+ = Q_{\rm adv}^-$		
$T (\sim r_{\rm g})$	$\sim 10^5 \text{K} (\text{AGN})$	$T_{\rm i} \sim 10^{12} {\rm K}$		
	$\sim 10^7 \mathrm{K} \mathrm{(XBs)}$	$T_{\rm e} \sim 10^9 { m K}$		
L	$\propto \dot{M}$	$\propto \dot{M}^2$		
$t_{\rm acc}$	$\gg t_{\rm ff}$	$\gtrsim t_{\rm ff}$		
H	$\ll r$	$\lesssim r$		
Flow	disk accretion	(nearly) spherical		
Spectra	UV bump (AGN)	hard power-law		
	soft X (XBs)	+ Compton bump		
2010/10/12	Black-Hole Accretion	Disks 32		

- CDAF: convection-dominated accretion flow •
- MHD Flow: magnetohydrodynamic flow

Table 9.1 Representative Flow Structure of RIAFs

accretion mode	ho(r)	T(r)	$v_r(r)$	$\alpha(r)$
ADAF	$\propto r^{-1.5}$	$\propto r^{-1}$	$\propto r^{-0.52}$	constant
ADIOS	$\propto r^{-1}$	$\propto r^{-1}$	$\propto r^{-1}$	constant
CDAF	$\propto r^{-0.5}$	$\propto r^{-1}$	$\propto r^{-1.5}$	constant
MHD flow	$\propto r^{-0.5}$	$\propto r^{-1}$	$\propto r^{-1.5}$	$\propto r^{-1}$

Black-Hole

	微小振動 音波	
•	音波(acoustic wave):	
	王縮性流体に微小摂	
į	動を与えたとき、圧力	
-	を復元力として伝播す	
	る縦波	
•	用振動数0	
	$\omega = c_{\rm s} k (\lambda v = c_{\rm s})$	
	 振動数v 	
	 角振動数ω=2πν 	
	 波長λ 	
	 波数k=2π/λ 	The second
2010	D/10/12 音速 c _s Black-Hole Accretion Disks	4

	降着円盤の微小振動 <i>n=</i> 0, <i>m=</i> 0				
	$(\tilde{\omega}^2 - \kappa^2)(\tilde{\omega}^2 - n\Omega_{\rm K}^2) = \tilde{\omega}^2 k_r^2 c_{\rm s}^2.$				
fundamental mode $(n=0)$ in the vertical direction axial-symmetric case $(m=0)$					
	$\omega^2 = \kappa^2 + k_r^2 c_s^2.$				
これは円盤銀河でもよく知られたモード					
inertial-acoustic wave / p-mode と呼んでいる					
2010/10/12	Black-Hole Accretion Disks 25				

			降着円盤の微 まとめ	收小振動)	
			$(\tilde{\omega}^2 - \kappa^2)(\tilde{\omega}^2 - n\Omega)$	${}^2_{ m K}) = \tilde{\omega}^2 k_r^2 c_{ m s}^2.$	
	高		振動波 ω_{+}^{2}	低振動波ω_2	
	<i>n</i> =0	ine p-n	rtial-acoustic wave		
	<i>n</i> =1	cor c-n	rugation wave	gravity wave g-mode	
	<i>n></i> 2	acc p-n	oustic wave	gravity wave g-mode	
1	2010/10/12		Black-Hole Accretion	Disks	29

診断図diagnostic diagram
伝播図propagation diagram
波の捕捉wave trapping

